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1. Introduction : 
Reynolds Average Navier Stokes (RANS) is the most used approach to simulate turbulent flows. Indeed, the 

two other approaches namely DNS (Direct Numerical Simulation) and LES (Large Eddy Simulation) require a 

number of calculation points often beyond the current computers capacities. Vandromme [1] estimated that 

number to 𝑅𝑒
5/4

where Re is the Reynolds number. In the frame of RANS method, momentum and mass 

conservation equations are averaged with Reynolds or Favre averaging. This procedure leads new unknown 

terms, which are second order moments or turbulent flux of velocity and scalar. 

The basic idea of first order turbulence modeling is the the Boussinesq assumption, i.e. the Gradient Transport 

Hypothesis (G.T. H.). Hence the Reynolds stress components are connected to the rate of strain with a turbulent 

viscosity coefficient, whereas with second order turbulence modeling, Reynolds stress and scalar turbulent flux 

are computed through their transport equations. 

Prandtl [2] proposed to link turbulent eddy viscosity νt  to a characteristic velocity and length scales [3]. Several 

models were constructed to determineνt  (k-epsilon [4], SST [5] and k-ω [6] ones). The two equations k-epsilon 

model has been widely used to simulate various turbulent flows, such as two phase flow [7-8], pollutant 

dispersion [9-11], heat transfer [12] and flow separation [13]. Nevertheless the k-epsilon model predictions are 

not always good, as it is the case of flows with streamline curvatures or swirl [3]. This is due to the high 

anisotropy of these flows where the Reynolds stress model gives better results than those obtained with k-ɛ one. 

That is why this study is undertaken, to examine the validity of G.T.H. in a complex flow with recirculation and 

stagnation points. In the same way, it is shown that scalar fields are far from the G.T.H. in the axial direction 

and also the Schmidt number is not constant, particularly at the two edges of the recirculation zone. 
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Abstract 

 

The k-epsilon model is widely used in the simulation of turbulent flows particularly 

industrial ones. It is based on the gradient transport hypothesis (G.T.H.) proposed by 

Boussinesq. It introduces the eddy viscosity coefficient calculated from the turbulent 

kinetic energy k and its dissipation rate ɛ which are determined by their transport 

equations. However, the gradient transport assumption is not always valid. So the 

objective of this work is to further examine the validity of this assumption by simulating a 

nontrivial flow, like that of bluff body with a recirculation zone behind the obstacle and a 

stagnation point on the symmetry axis. The full second order model is considered. Thus 

the Reynolds stresses components and turbulent scalar flux are derived from their 

transport equations, respectively. The dynamic and scalar fields are examined and the 

turbulent Schmidt number is analyzed. 
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2. Second order turbulence modeling 

2.1. Reynolds stress transport equation 
The instantaneous equations of mass conservation and momentum [14] are averaged. In the situation of variable 

density flow, one use Favre averaging because the resulting equations are similar in form to the Reynolds 

equations for uniform density flow. From these instantaneous equations and after some manipulations, the 

Reynolds stress equations become as follows: 

 
∂

∂t
ρ ui

"uj
"   +

∂

∂xk
 ρ u 𝑘ui

"uj
"  = −

∂

∂xk
 ρ uk

" ui
"uj 

" + δki uj
"p′      + δkj ui

"p′      − τik uj
"        − τjk ui

"       − −→ d ij  

−ρ ui
"uk

" ∂u j

∂xk
   − ρ uj

"uk
" ∂u i

∂xk
  − − − − − − −−−−→ P ij  

−τik

∂uj
"

∂xk

         
− τjk

∂ui
"

∂xk

         
     − − − − − −−−−−−−→ ϵ ij   (2.1) 

+ 𝑝′  
∂ui

"

∂xj
 +

∂uJ
"

∂xi
 

                    
  − − −− − − −−−−− −−→  

ij
 

−ui
" ∂p 

∂xj
 − uj

" ∂p 

∂xi
 − − − − − − −−−−−−−→ G ij  

 

Where   , "  and   , ′ notations are mean and fluctuation in Favre and Reynolds averaging approaches, 

respectively. 

In their experimental study in an axisymmetric plane channel, Hanjalic and Launder [15] suggested that pressure 

diffusion term can be neglected. The same authors [16] derived a transport equation for the triple correlation 

ui
′uj 

′ uk
′         
. Under some assumptions particularly when the convective transport term can be neglected the 

following algebraic formulae is established: 

 

ui
′uj 

′ uk
′           =  − CS

k

ϵ
 ui

′ul
′     ∂u j  

′ uk
′       

∂x l
  + uj 

′ ul
′      ∂uk

′ ui
′       

∂xl
 +  uk

′ ul
′      ∂ui

′ u j  
′       

∂xl
     (2.2) 

 

Daly and Harlow [17] have proposed the following model for the triple correlation: 

 

ui
′uj 

′ uk
′          = − CS

k

ϵ
uk
′ ul

′      ∂ui
′ u j  

′       

∂xl
       (2.3) 

 

Although this expression is much simplest than that of Hanjalic and Launder[16], it remains quite general of 

Shir’s [18] model which is: 

ui
′uj 

′ uk
′          = − CS

k2

ϵ

∂ui
′ u j  

′       

∂xk
    (2.4) 

 

Thus, expression (2.3) uses an anisotropic diffusion coefficient. 

The last contribution in the Reynolds stress tensor diffusion d ij  is due to viscosity and is assumed to be 

negligible for high turbulent Reynolds number flows. 

The third term on the right hand side of equation (2.1) is the dissipation tensor ϵ ij . It is well known that 

turbulent energy is dissipated through the smallest eddies, and at high Reynolds number hypothesis these 

structures are isotropic. Hence, one can write: ϵ ij =
2

3
δij𝜀 where ɛ is the turbulent kinetic energy dissipation 

rate and 𝛿𝑖𝑗  is the Kronecker symbol. 

The fourth term on the right hand side of equation (2.1) is the correlation pressure rate of strain. From the mass 

and momentum equations, Chou and Quart [19] found the following equation at some point x0: 

 

p ′

ρ
 
∂ui

′

∂x j
+ 

∂u j
′

∂xi
 

                 
  =  

ij1
 +  

ij2
 +  

ijp
 (2.5) 
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Where : 

 
ij1

 = −
1

4π
 

∂2uk
′ u l     

′

∂xk  ∂x1
 
∂ui

′

∂x j
  +  

∂u j
′

∂xi
 

                         
vol

dvol

𝐫
  ;  

ij2
= −

1

2π
 

∂u k

∂xl

∂u l
′

∂xk
 
∂ui

′

∂x j
  + 

∂u j
′

∂xi
 

                    
vol

dvol

𝐫
 

 


ij

is the sum of two contributions, each one corresponds to a special physical process. 
ij1

is the result of mutual 

interaction between turbulence components, while 
ij2

 arises from interaction between mean rate of strain and 

fluctuating velocity. The experience shows in the case of grid turbulence decay that flow evolves to an isotropic 

state. Moreover in this situation only ɛij and 
ij1

 terms are different from zero in equation (2.1). This fact led 

Rotta [20] to propose the following model: 

 
ij1

= −C1  
k 

τ
bij   , where bij is anisotropy tensor defined as: bij   =

ui
′ u j

′      

ui
′ 2     −

1

3
δij  . C1 is a constant and τ is a 

characteristic time of the return to the isotropy.τ is assumed to be equal to a turbulent time scale 

τ𝑡 =  
𝑘

𝜀
. 

The second part of pressure rate of strain correlation is 
ij2

. It is qualified as a rapid part and presumed to be 

responsible of the transmission of any perturbation to the Reynolds stress components. Naot et al. [21] proposed 

the following expression:  
ij2

 = −C2  P ij −
2

3
δij P k  where P k =

1

2
P ij  is the rate of production of turbulent 

energy, and C2 is a constant. Launder et al. [22] tried to ameliorate Naot’s proposal by using some 

ideas in the previous work of Rotta [20], they concluded that: 
 

 ϕij + ϕji 2
= −

 C2   +8 

11
 Pij  −  

2

3
Pδij −

 30c2  −2 

55
k  

∂u i

∂x j
 +

∂u j

∂xi
 −

 8C2   − 2 

11
 Dij −

2

3
Pδij  (2.6) 

Where Pij  = − ui
′uk

′      ∂u j

∂xk
  + uj 

′ uk
′      ∂u i

∂xk
  and Dij =  −  ui

′uk
′      ∂u k

∂x j
  + uj 

′ uk
′      ∂u k

∂xi
  

 

If we contract indices in expression (2.6) each of the three groups of terms on the right side will go to zero. Thus 


ij2

 has a redistributive character. Also Launder et al. [22] show that the first group is a dominant one compared 

to the two others, and finally 
ij

 can be modeled as Naot’s proposal with a change in C2 constant. 

Many other authors (Pope [23], Dibble et al. [24], Janicka [25]) have proposed additional term in the correlation 

of pressure rate of strain to take into account some effects like low turbulent Reynolds number flows, or 

relaminarization effect in diffusion flame [26]. 

The last term on the Reynolds transport equation (2.1) is also unknown. By use of Favre averaging and 

Reynolds averaging properties, the following relation can be derived [26]: ui
" =  

−𝜌 ′ ui
"      

ρ 
  i.e. ui

" =
𝜈𝑡

ρ 

∂ρ 

∂xi
 by 

means of gradient transport hypothesis. 

 

Taken into account all the previous developments, the Reynolds stress transport equation can be written for high 

Reynolds number as follows: 
 

𝜕

𝜕𝑡
𝜌 𝑢𝑖

′′ 𝑢𝑗
′′ +

𝜕

𝜕𝑥𝑘
𝜌 𝑢𝑘 𝑢𝑖

′′ 𝑢𝑗
′′ = 𝐶𝑠

𝜕

𝜕𝑥𝑚
 𝜌 

𝑘 

𝜀 
𝑢𝑚
′′ 𝑢𝑛

′′ 
𝜕𝑢𝑖

′′ 𝑢𝑗
′′ 

𝜕𝑥𝑛
 − 𝜌 𝑢𝑖

′′ 𝑢𝑚
′′ 

𝜕𝑢 𝑗

𝜕𝑥𝑚
− 𝜌 𝑢𝑗

′′ 𝑢𝑚
′′ 𝜕𝑢 𝑖
𝜕𝑥𝑚

 

−
2

3
𝜌 𝛿𝑖𝑗 𝜀 − 𝐶1𝜌 

𝜀 

𝑘 
 𝑢𝑖

′′ 𝑢𝑗
′′ −

2

3
𝛿𝑖𝑗 𝑘  − 𝐶2𝜌  𝑃 𝑖𝑗 −

2

3
𝛿𝑖𝑗𝑃 𝑘 −

𝜈𝑡
𝜌 
 
𝜕𝜌 

𝜕𝑥𝑖

𝜕𝑝 

𝜕𝑥𝑗
+

𝜕𝜌 

𝜕𝑥𝑗

𝜕𝑝 

𝜕𝑥𝑖
   (2.7) 

 

2.2. Turbulent scalar flux 𝒖𝒊
′′𝜽′′ transport equation  

From the transport equations of instantaneous velocity and inert scalar θ, the following equation for 𝑢𝑖
′′ 𝜃′′  can 

be derived [26]: 

 

∂

∂t
𝜌 𝑢𝑖

′′𝜃′′ +
∂

∂xk
 𝜌 𝑢𝑘 𝑢𝑖

′′𝜃′′  = −
∂

∂xk
 𝜌 uk

" 𝑢𝑖
′′𝜃′′  +  δki p′𝜃′′      − δkjτij𝜃

′′       + δkj Jj
θui

"      − − − −−→ d iθ  
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−𝜌 𝑢𝑘
′′𝜃′′ ∂u i

∂xk
 − 𝜌 ui

"uk
" ∂θ 

∂xk
−−−−−−−−−−−−−−−→ p iθ  

−τij
∂𝜃′′

∂x j

       
  +  Jj

θ ∂ui
"

∂x j

       
− − − − − −−−−−− −−−−−−→ ε iθ  (2.8) 

+p′
∂𝜃′′

∂xi

        
− − − − − −−−−−−−−−− −−−−−−−→  

iθ
 

−𝜃′′ 
∂p 

∂xi
−−−−− −−−−−−−−−− −−−−−−→ G iθ  

 

Where Ji
θ  is the laminar diffusion flux of θ. On the right hand side of equation (2.8) are exposed all the 

processes contributing to the turbulent scalar flux variation: the diffusion tensor diθ , the production by mean 

velocity gradient and mean scalar gradient Piθ , the dissipation tensor εiθ , the correlation pressure scalar 
iθ

 and 

the mean pressure gradient Giθ . In the case of constant density flows all the above processes exist except the Giθ  
which is nil. To model Reynolds stress tensor (equation 2.1), the same procedure is used in order to 

close unknown terms in equation (2.8), especially the pressure scalar correlation 
iθ

which is modeled 

through basic idea of Rotta [20] with the return to isotropy (slow part) and isotropisation of production (rapid 

part). Finally, the following closed scalar flux transport equation for high Reynolds number can be written as: 

 

𝜕

𝜕𝑡
𝜌  𝑢𝑖

′′ 𝜃′′ + 
𝜕

𝜕𝑥𝑘
𝜌 𝑢𝑘 𝑢𝑖

′′ 𝜃′′ = 𝐶𝑠𝜃
𝜕

𝜕𝑥𝑚
 𝜌 

𝑘 

𝜀 
𝑢𝑚
′′ 𝑢𝑛

′′ 
𝜕𝑢𝑖

′′ 𝜃 ′′ 

𝜕𝑥𝑛
 − 𝜌 𝑢𝑚

′′ 𝜃′′ 
𝜕𝑢 𝑖
𝜕𝑥𝑚

− 𝜌 𝑢𝑖
′′ 𝑢𝑚

′′ 
𝜕𝜃 

𝜕𝑥𝑚
 

−𝐶𝜃1𝜌 
𝜀 

𝑘 
𝑢𝑖
′′ 𝜃 ′′ + 𝐶𝜃2𝜌 𝑢𝑚

′′ 𝜃′′ 𝜕𝑢 𝑖

𝜕𝑥𝑚
 (2.9) 

 

2.3. Rate of dissipation of turbulent kinetic energy ɛ equation 

ɛ is defined as : ε  = ν  
∂ui

′

∂x j
 

2        
. The transport equation for ɛ was derived first by Davidov [27] and Harlow and 

Nakayama [28]. For high Reynolds number it can be expressed as: 

 

Dε 

Dt
 =  −2ν

∂ui
′

∂xk

∂ui
′

∂xl

∂uk
′

∂xl

               
 − 2 ν

∂²ui
′

∂xk  ∂x1
 

²                 

−
∂

∂xk
 uk

′ ε′        + 2
ν

𝜌

∂ui
′

∂xl

∂p′

∂xl

         
  

                                                          (i)                        (ii)                                 (iii)                              (2.10) 

 

−2 
∂ui

′

∂xl

∂uk
′

∂xl

          
 +

∂ul
′

∂xi

∂ul
′

∂xk

         
 
∂u i

∂xk
 − 2ν uk

′
∂ui

′

∂xl

        ∂²u i

∂xk ∂xl
 

                                                                   (iv)                                      (v) 

 

All the terms on the right hand side of equation (2.10) are unknowns and must be modeled. There are: (i): 

production by vorticity fluctuations, (ii): dissipation of ɛ by viscosity, (iii): diffusion of dissipation by turbulent 

flow and pressure fluctuation, (iv): production by mean rate of strain, (v): production by mean dynamic field. 

The knowledge of ɛ leads first to determine the Reynolds stresses through their transport equation and then to 

have information about length and time scales of turbulent motion. The smallest eddies which are responsible 

for dissipation of kinetic energy have the following scale: 𝑙𝑘 = 𝐶  
𝜈3

𝜀 
 

1/4

 where ν is the kinematic viscosity and 

C a constant. Another parameter is the dynamic time scale which can be approximated as: 𝜏𝑡 =
𝑘 

𝜀 
. It is of 

importance in some turbulent combustion models such as the Intermittent Lagrangian Model (MIL model) of 

Gonzalez and Borghi [29]. In fact the interaction between dynamical scales and chemical ones in these turbulent 

combustion models leads to the prediction of extinction/re-ignition phenomena in turbulent diffusion flames 

[30]. The following transport equation for ɛ is proposed by Hanjalic and Launder [16]: 
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 Dε 

 Dt
 = Cε

∂

∂𝑥𝑘
 

k 

ε 
uk
′ ul

′      ∂ε 

∂xl
 + Cε1

ε 

k 
𝑢𝑖
′𝑢𝑘

′      𝜕𝑢 𝑖
𝜕𝑥𝑘

− Cε2

ε² 

k 
 

 

In his study, MacInnes [31] stated that density variation affects turbulence structures. This effect can be handled 

by additional of two terms in ɛ equation. Vandromme [1] proposed to take into account the density variation in 

the same manner as in turbulent kinetic energy. Thus the source term G ε  is as: 
 

G ε  =  −Cε3 

ε 

k 
ui

" ∂p 

∂xi
 +  Cε4  

ε 

k 
p′

∂ui
"

∂xi

        
 

 

Finally the following transport equation for ɛ is retained [26]: 

 

𝜕

𝜕𝑡
𝜌 𝜀 +

𝜕

𝜕𝑥𝑘
𝜌 𝑢𝑘 𝜀 = 𝐶𝜀

𝜕

𝜕𝑥𝑚
 𝜌 

𝑘 

𝜀 
𝑢𝑚
′′ 𝑢𝑛

′′ 
𝜕𝜀 

𝜕𝑥𝑛
 − 𝐶𝜀1𝜌 

𝜀 

𝑘 
 𝑢𝑖

′′ 𝑢𝑚
′′ 

𝜕𝑢 𝑖
𝜕𝑥𝑚

+
𝜈𝑡
𝜌 2

𝜕𝜌 

𝜕𝑥𝑖

𝜕𝑝 

𝜕𝑥𝑖
 − 𝐶𝜀2𝜌 

𝜀 2

𝑘 
(2.11) 

 

In this study the second order turbulence model is a set of equations: (2.7) for Reynolds stresses, equation (2.9) 

for turbulent scalar flux and equation (2.11) for the kinetic energy dissipation rate ɛ. The values of all constants 

are specified in table 1, just below: 

 

Table 1: Constants of second order turbulence model 

𝐶1 𝐶2 𝐶𝜃1 𝐶𝜃2 𝐶𝑠 𝐶𝜀  𝐶𝑠𝜃  

1.8 0.6 3 0.5 0.22 0.18 0.18 

 

3. First order turbulence modeling: k-ɛ model 
Reynolds stress tensor is not computed by its transport equation like in the previous section but from an 

algebraic relation. Boussinesq in 1877 proposed a similar relationship to that of the viscous tensor in case of 

Newtonian fluid. Thus the shear stress is as : - u′v′      =  νt
∂u 

∂y
 (2.12). Where νt  is the turbulent eddy viscosity. It 

depends not on the fluid properties but on the flow characteristics. The equation (2.12) can be generalized as: 

 

−ui
′uj

′      =   νt  
∂u i

∂xj
 +

∂u j

∂xi
  −

2

3
δij k   (2.13) 

 

The equivalent of equation (2.13) for an inert scalar θ is: u𝑖
′θ′      =   

νt

Scθ

∂θ 

∂X i
  (2.14). Where Scθ  is a turbulent 

Schmidt number. Equations (2.13) and (2.14) are called a gradient transport hypothesis. 

 

The gradient transport laws are very simple in implementation. However, their failure has been established in 

many cases. Thus, the experimental investigation of a parietal jet by Tailland and Mathieu [32] shows that 
∂u 

∂y
 

does not vanish in the same place as u′v′     . Also counter gradient situations have been shown in the literature. 

That is the case of Starner and Bilger’s [33] study in a turbulent diffusion flame. 

The proportionality coefficient between Reynolds stress and rate of strain is the turbulent eddy viscosity νt . 

Prandtl [2] has linked νt  to a characteristic velocity V and a characteristic length scales l of the flow; thus: 

νt = 𝑉 ∗ 𝑙. V and l are determined empirically. This model is known as zero equation model. Thereafter, the 

calculation of the velocity characteristic has been improved. Indeed, V is connected to the square root of the 

turbulent kinetic energy k, which is given by its transport equation. Thus: νt =  𝑘 𝑙. This is the model of 

Prandtl-Kolmogorov known as the one equation model. This model remains dependent on the length scale 

whose determination is difficult in the case of complex flows. Kolmogovov [34] proposed to link the length 

scale to the two main variables of the turbulent flow k and ε according to the relationship: l =
k 3/2

ε 
 which with 

the above equation for l gives: νt =
k 2

ε 
 (2.15). This is the two-equation model known as the k-ɛ model. 
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It should be noted that in the context of the second order turbulence models, the resolution of the k equation is 

not necessary. Physically k represents the energy of turbulent motion, which is contained in large structures. The 

k equation is obtained from the Reynolds stresses by contraction of the indices i and j in equation (2.1) (k =
1

2
ui

"ui
" ). Thus: 

 
∂

∂t
ρ k +

∂

∂xk
 ρ u 𝑘k  = −

∂

∂xk
 ρ uk

" ui
"ui 

" + δki ui
′p′     − τik ui

"       −−−−−−−−−→ d k  

−ρ ui
"uk

" ∂u i

∂xk
−−−−−−−−−−−−−−−−→ P k  

−τik

∂ui
"

∂xk

         
−−−−−−−−−−−−−−−→ ϵ    (2.16)  

+ 𝑝′
∂ui

"

∂xi

        
−−−−−−−−−−−−−−−−−→  

k
 

−ui
" ∂p 

∂xi
−−−−−−−−−−−−−−−−−→ G k  

 

The five terms on the right hand side of equation (2.16) have the same meaning as in equation (2.1). 

Related to isovolume case, the k equation reveals two additional contributions: the correlation pressure 

divergence 
k
 and the mean pressure gradient term Gk. According to Bilger [35], these two contributions can 

represent the turbulence generated by the flame. The closure procedure of 
k
 term is based on the basic ideas of 

Rotta [20] and Naot et al. [21]. The other terms are modeled in a similar manner that the Reynolds stresses using 

the gradient transport hypothesis for turbulent flux of velocity and scalar. 

 

Finally in the frame of first order turbulence modeling the k and ɛ equations can be written as follows:  

 

𝜕

𝜕𝑡
𝜌 𝑘 +

𝜕

𝜕𝑥𝑖
𝜌 𝑢𝑖 𝑘   =  

𝜕

𝜕𝑥𝑖
  𝜇 +

𝜇𝑡
𝜎𝑘

 
𝜕𝑘 

𝜕𝑥𝑖
 + 𝜌 𝑃𝑘  − 𝜌 𝜀 −

𝜈𝑡
𝜌 

𝜕𝜌 

𝜕𝑥𝑖

𝜕𝑝 

𝜕𝑥𝑖
 (2.17) 
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𝜕𝑥𝑖
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𝜇𝑡
𝜎𝜀
 
𝜕𝜀 

𝜕𝑥𝑖
 + 𝐶𝜀1𝜌 

𝜀 

𝑘 
 𝑃𝑘 −

𝜈𝑡
𝜌 2

𝜕𝜌 

𝜕𝑥𝑖

𝜕𝑝 

𝜕𝑥𝑖
  − 𝐶𝜀2𝜌 

𝜀 2

𝑘 
 (2.18) 

Where : 

𝑃𝑘  = −𝜇𝑡
𝜕𝑢 𝑖
𝜕𝑥𝑗

 
𝜕𝑢 𝑖
𝜕𝑥𝑗

+
𝜕𝑢 𝑗

𝜕𝑥𝑖
 −

2

3
𝑘 
𝜕𝑢 𝑘
𝜕𝑥𝑘

−
2

3
𝜇𝑡  

𝜕𝑢 𝑘
𝜕𝑥𝑘

 
2

 

 

is the production of turbulent kinetic energy. 

 

The constants of the k-ε model are given in the table 2 just below: 

 

Table 2: Constants values of k-ɛ turbulence model 

𝐶𝜇  𝐶𝜀1 𝐶𝜀2 𝜎𝑘  𝜎𝜀  

0.09 1.44 1.92 1 1.3 

 

4. Application 

4.1.Numerical method 
Computations were performed with a two dimensional ESTET numerical code, which was developed in LNH-

EDF Laboratory (Chatou, France). It is based on finite difference approach. Instead of solving the differential 

equation relevant of the total balance one, it solves simple differential equations type convection or diffusion. 

Convection is solved with a two dimensional characteristics method, using third order space interpolation, 

diffusion and source term step is solved with a semi-direct implicit method after splitting into orthogonal 

directions. Pressure is located at the center of meshes and determined with a Poisson equation, which is treated 
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with a conjugate gradient method. To avoid numerical oscillations, the Reynolds stress and scalar turbulent flux 

components are computed on the pressure half staggered subgrid. Special efforts have been made to minimize 

the CPU time increase and to get a numerically stable coupling between Navier Stokes and Reynolds stress 

equations. Conventional wall functions (linear or logarithmic laws) are used for solid wall conditions. 

 

4.2. Test case description 
The flow configuration consists of a 5.4 mm diameter jet of methane (21m/s) 

located at the center of a cylindrical bluff body. The air is supplied through a 

coaxial jet surrounding the bluff body between diameters of 50 mm and 100 

mm. The experiment has been conducted in an unconfined case and 

corresponds to a blockage ratio of 25% (figure 1). 

Fine measurements were performed in the inert and reactive cases by Sandia 

national laboratories and Gaz de France [36]. The experiment shows at high air 

velocity (25m/s) that the methane jet is entirely blocked by air flow and two 

stagnation points are observed on the center line, respectively at 40 mm and 65 

mm from the jet exit (Figure 2 : the N case). The solid lines represent zero iso 

mean axial velocity. The recirculation zone is located between the two lines, 

with two counter-rotating eddies. When air velocity decrease, the first 

stagnation point goes downstream toward the second. The two points coincide 

for a mean air velocity equal of 15 m/s (Figure 2: the M case). And for low air 

velocity the methane jet penetrates completely with a displacement of the 

stagnation point from the symmetry axis (Figure 2: the L case whose mean air 

velocity is equal to 7.5 m/s). 
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5. Results and discussions 
The sensitivity of the results to the inlet conditions of both jets has been tested and found to be important. As 

expected, the mean velocity profile and the turbulence level of the methane inlet jet have a great influence on 

the first stagnation point location (on the axis), while the second stagnation point is much more determined by 

the same parameters of the air inlet. The length of the upstream methane pipe is long enough to allow fully 

developed turbulence pipe conditions for the central jet. Moreover the air flow inside the burner has been 

computed to provide realistic conditions at the axis. The computations are performed with a grid of 72x125 

nodes, representing respectively 175 mm radially and 270 mm axially. The grid independence has been checked 

with a grid of 116x214. For more details about the computational domain see the reference [37]. 

Figure 1 : Experimental setup 

Figure 2 : Zero iso mean axial velocity lines from Schefer et al’ experience[36] 
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In this study we are interested in the simulation of the bluff body inert case M which corresponds to the central 

methane mean velocity jet equal to 25m/s surrounded by an air coflow with 15m/s for bulk velocity. The 

computations are made with two turbulence models. The first one is the k-ɛ model whose equations are 

developed in section 3, the second model is the Reynolds stress model (RS model) with full second order 

modeling, i.e. transport equations for Reynolds stress tensor and turbulent scalar flux are resolved. Velocity 

vector field computed with the RS model is depicted on Figure 3. Thus the flow presents a large recirculation 

zone downstream the bluff body which does not enter the central jet. Along the axis, the velocity exhibits a 

minimum positive value in accordance with the experimental observations of Schefer et al. [36]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For more detailed analysis, the mean axial velocity computed with k-ɛ model and RS model compared to 

measurements is depicted on Figure 4.We distinguish four characteristic zones of the axial development of the 

flow: i) first, the potential region, wherein the mixture has not yet performed and where the average values of 

velocity and scalar are constant ; ii) decreasing zone, which characterizes the central jet penetration ; iii) 

minimum velocity zone, called stagnation region where the axial mean velocity is close to zero. Methane there 

are trace; iv) the reattachment zone: the flow of air joins the axis of symmetry, it is accelerating and moving 

towards a free jet type flow. 

 

Figure 3 : Velocity vector field computed with RS Model 
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As regards the axial mean velocity, the k-ɛ model predicts a higher decrease rate, therefore a low penetration of 

the jet. In addition, at the stagnation region, there is the existence of two points of zero velocity with a negative 

mean axial velocity zone extending over 15 mm. The predictions of RS model are better than those of the model 

k-ɛ, however the position of the minimum axial velocity point is moved slightly downstream. 

 

Concerning the inert scalar results, experience indicates a change of the decay slope at 40 mm from the burner 

nozzle. The k-ɛ model seems to capture this phenomenon, however it greatly underestimates the penetration of 

the jet, while the predictions of RS model are better (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The turbulent eddy viscosity fields simulated with k-ɛ model and RS model are shown in Figure 6. There is a 

great difference between the two fields especially for a decreasing zone and the stagnation region also. 

Turbulent viscosity values predicted by k-ɛ model are much greater than those predicted by RS model, which 

can explain the low rate of penetration of the methane jet when predicted by k-ɛ model, and therefore the 

discrepancies between simulations and measurements shown in figure 4 and 5. 

 

Figure 4 : Axial evolution of mean axial velocity on the symmetry axis 

Figure 5: Axial evolution of mean inert scalar on the symmetry axis 
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Figure 6: Turbulent eddy viscosity fields predicted by k-ɛ model (on the left) and RS model (on the right) 

 

 

The radial evolution of Schmidt number at 50 mm from 

the burner nozzle is shown in Figure 7. It is computed 

as: 𝑆𝑐𝜃 =
𝜈𝑡

𝑣 ′′ 𝜃 ′′ 
𝜕𝜃 

𝜕𝑟
 where 𝑣 ′′ 𝜃′′  is the radial component 

of turbulent scalar flux, and r is the radial coordinate. 

The Schmidt number is far from constant, especially at 

the two edges of the recirculation zone where it reaches 

its maximum value, which is about three times the 

nearly constant value observed at the center of 

recirculation zone. 

El Amraoui and Garreton [26] have simulated three 

different round jets, namely the air jet, the CO2 jet and 

the Helium jet. They concluded that the Schmidt 

number is approximately uniform and only slightly 

depend on the density variation and equal to 0.6±0.1. 

Sarh [38] shows in a rectangular jet flow that in the 

slightly heated case the values of the turbulent Prandtl 

number are more homogeneous and they are between 

0.5 and 0.7. In the strongly heated case, these values are 

generally larger than those from the preceding case and 

on the other hand, they are more scattered. 

These trends were found experimentally by Bahraoui  

and Fulachier [39] in an air axisymmetric jet. 

 

Figure 7: Radial evolution of turbulent 

Schmidt number at 50 mm 
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Figure 8: Axial and radial turbulent scalar flux components fields computed with RS model. 

Comparison between Transport equation and G.T. Hypothesis 

 

Turbulent scalar flux components are shown in Figure 8. Computations have been done using RS model only. 

Comparisons are made for each scalar flux component between calculation obtained from transport equation and 

those obtained from gradient transport hypothesis, with Schmidt number equal to 2/3. For the radial scalar flux, 

calculations are not very different. However an important difference is noted concerning the axial scalar flux. In 

fact the values obtained from the gradient transport hypothesis are very low compared to those calculated by the 

transport equation. These results allow us to conclude that if the gradient hypothesis is accepted in the radial 

direction, it still remains far from reality in the axial direction. A similar result is established in the study of 

Correa et al. [40] who found that the radial scalar flux component computed from the velocity-scalar joint pdf is 

approximately the same as that predicted by the gradient transport hypothesis when a Schmidt number is about 

0.4. 
In the same manner we have computed the axial and radial components of Reynolds stress tensor. Computations 

were done by RS model. Comparisons are made for each Reynolds stress component between calculations 

obtained from transport equation and those obtained from gradient transport hypothesis. In this case differences 

exist between computations for both the axial component but also the radial component (Figure 9). However, 

they are more pronounced for the axial flux. Moreover the anisotropy of Reynolds stress components is rather 

well predicted by transport equation. 
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Figure 9: Axial and radial Reynolds stress components fields computed with RS model. 

Comparison between Transport equation and G.T. Hypothesis 

 

 

Conclusion  
In this study we have examined more closely the validity of the gradient transport hypothesis for the dynamic 

and scalar fields in the case of a non-trivial turbulent flow exhibiting a complex aerodynamics, such as bluff 

body one for which a recirculation zone is developed behind the obstacle, and the jet of methane is blocked at 

the center by the annular air flow. This means that a stagnation point is located on the symmetry axis. The first 

order turbulence model used is the k-ɛ. In the second order turbulence model, namely RS model, Reynolds 

stress and turbulent scalar flux of an inert scalar are transported by their transport equations. Comparison of 

computations and measurements has showed better prediction of the jet penetration rate by the RS model. This 

can be explained by the very high values of the turbulent viscosity calculated by the k-ɛ model, compared to 

those related to the RS model. In addition, the radial evolution of the turbulent Schmidt number has showed that 
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it is constant and equal to 0.5, except at the two edges of the recirculation zone where this value is about three 

times the previous one. 

RS model simulations enable us to conclude also that if the gradient transport hypothesis is acceptable in the 

radial direction, it is not the case for the axial one. Moreover the anisotropy of Reynolds stress components is 

rather well predicted when second order turbulence model is used. 
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