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Abstract 
 
Using a finite elements procedure, the gliding force acting on an edge dislocation localized near a wedge 
shaped solid has been numerically calculated as a function of its position coordinates. An analytic function of 
this force has been then established, considering results obtained for a screw dislocation near two orthogonal 
free surfaces. 
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1. Introduction 
 
During the elaboration of multilayers or thin films 
on substrates, high residual stresses usually 
appear, which can strongly modifies the 
mechanical behavior of these nano-structures. 
Stresses in thin films and in substrates can have 
different origins like for example the difference of 
the lattice parameters between the two materials 
(epitaxy), the thermal expansion differences, the 
phase transitions or the defects like dislocations or 
precipitates [1,-3]. During the past few years, 
many papers have dealt with the determination of 
the stress field in materials since stresses are 
fundamental to understand the propagation of 
cracks and dislocations at the interfaces, the 
buckling of thin films on substrates, etc [4-10].  

The problem of determination of stresses in a 
semi-infinite solid containing edge or screw 
dislocations near its free surface has been now 
solved [11-13 ] using different technics like 

Green’s functions, distributions of Boussinesq’s 
forces or surface dislocations. The stability of 
screw and edge dislocations near interfaces in 
multilayers structures, with different elastic 
constants and compositions has been also 
investigated using Muskhelishvili method [15, 
16], Fourier series developments [17], etc.  

In the case of wedge-shaped bodies, the 
stress state determination is much more complex. 
Different methods have been used for an edge 
dislocation, like for example the Mullin 
transformation [18] which gave an integral 
representation of the stress of an edge dislocation 
or a disclintion. For a screw dislocation, the shear 
stress has been determined as a function of the 
angle of the material-filled region [19]. 

In this paper, the gliding force of an edge 
dislocation has been first computed near two 
orthogonal free surfaces, using a finite elements 
method. An analytic expression of this force has 
been then established considering the expression 
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of the gliding force obtained for an edge 
dislocation in a semi-infinite solid and for a screw 
dislocation in a wedge shaped solid. 

 
2. Method of calculation 
An edge dislocation of Burgers vector   

r 
b  (b, 0) is 

considered at point (x,y)  in a wedge shaped 2D 
solid of shear modulus and Poisson’s ratio µ  and 
ν respectively (see figure 1 for axes). The total 
stress σ ij

tot (x,y) in the material due to this edge 

dislocation can be written as: 
 

σ ij
tot(x,y) = σ ij

0(x,y)+ σ ij
rel(x,y) , 

where σ ij
0(x,y) is the initial stress of the 

dislocation in an infinite medium and σ ij
rel (x,y) is 

the stress relaxation induced by the two 
orthogonal free surfaces S1  and S2 . First to 
determine numerically this stress relaxation 
σ ij

rel (x,y), a finite elements procedure (with 

CASTEM 2000) has been used. The finite element 
method is a numerical analysis technique for 
obtaining approximate solutions to a wide variety 
of  physical problems. This approximation allows 
to obtain a linear algebraic system  

[K]{u}={F} ,   Or K is a Stiffness matrix, F is a 
Force vector, u is a displacement vector . The 
stresses are calculated from the displacements. 
On the free surfaces S1  and S2 , the mechanical 
equilibrium of forces gives the following 
conditions: 
 

σ ij
tot  nj = 0 on S1 and S2

⇒  σxx
tot (x, 0) = σxy

tot (x,0) = 0 on S1

⇒  σyy
tot (0, y) = σxy

tot (0,y) = 0 on S2

 

 

where n j  is the component of the unit normal 

vector to the free surfaces. 
Two arbitrary surfaces S3  and S4  have 

been introduced to block the total displacements 
of the solid (figure 1). After the numerical 
computation of the stress tensor of relaxation Σ rel  
induced by the two free surfaces S1  and S2 , the 
gliding force of the dislocation has been easily 
derived using the relation: 
 

  

r 
F num(x,y) =

r 
b  Σ rel ∧

r 
l ⇒ Fx(x,y) = b σxy

rel(x,y)
 

where,   
r 
l  is the unit line vector of the dislocation 

in the (0z) direction.  

 

The numerical force Fx
num(x,y)  acting on the 

edge dislocation in the (0x) direction has been 
determined as a function of x for different values 
of y, see figure 2. Considering thus the 

dimensionless function y Fx
num(x / y) , it has been 

observed figure 3 that, for the different values of 

y, the curves of y Fx
num(x / y)  were 

superimposed. This scalling allows one to 
consider the dimensionless expression of the force 
acting on the edge dislocation, as a function of x, 
in only one plane parallel to the free surface S2 , 
i.e. for one arbitrary constant value of y.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
         Fig. 1. Position of a dislocation                                                             
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Fig. 2. Numerical force function of x for different 
value of y 
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Fig.3. Dimensionless function for different value of y 

 
 

An analytic expression of the force 
y Fx

num(x / y) = ϕx
num(ξ)  can be now established. 

Since the dimensionless gliding force induced by 
one free surface S1 , in the case of a semi-infinite 
solid, is well known [4-8]: 

 

ϕx
S1 (ξ) =

µb

2π(1− ν)
 
1

ξ , 

 
only the effects of the second free surface S2  on 

the dimensionless force ϕx
num(ξ)  calculated in the 

corner of the solid has to be determined: 
ϕx

num − ϕx
S1 .  

To quantify the influence of the free surface S2  
on the gliding force acting on the edge 
dislocation, the expression of the gliding force for 
a screw dislocation, in the corner of one solid 
induced by two free surfaces S1  and S2 , has to be 
first established. Considering the 3 screw 
dislocation images of the dislocation in the 
material filled region (figure 4), the gliding force, 
in the (0x) direction, has been found to be: 
 

ϕx
screw(ξ) =

µb

2π
 

1

ξ
−

ξ2

1+ ξ2

 
 
  

 
 =

µb

2π
 f(ξ) . 

 
Since this function f(ξ ) has the good behaviour 
even for an edge dislocation: 
f( ξ) → 1/ξ   as  ξ → 0  near the free surface S1  
and f( ξ) → 0  as  ξ → +∞  near S2 , this 

expression of the force ϕx
screw has been used in our 

determination of the expression of the gliding 
force on the edge dislocation.  
Finally, after approximation of the remaining 
numerical force: 
 

ϕx
num(ξ) −

µb

4π(1− ν)
 

1

ξ
−

ξ
1+ ξ2

 
 
  

 
 

, 

 
with the help of fractional functions, 

χ(ξ − a)α

1+β (ξ − b)2( )δ  where a, b, α, β,  χ , δ are 

numerical constants, the dimensionless force 
acting on the edge dislocation has been found to 
be : 
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Finally, the gliding force Fx (x,y)  can be written 
as: 
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This expression of the gliding force can now be 
used to investigate the mechanical behaviour of 
thin films on substrates and in particular the 
delamination of the films calculating for example 
the activation energy to introduce an edge 
dislocation on the interface from one free surface. 
 
Conclusion 
 
In this paper, the stress relaxation in a wedge 
shaped solid containing an edge dislocation has 
been determined using a finite elements method. 
An analytic expression of the force acting on the 
edge dislocation has been then determined which 
now can be used to investigate the stability of 
these dislocations in nano-structures like thin 
films on substrates. 
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