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Abstract: This work applies variation iteration method to study the simultaneous 
impacts of surface elasticity, initial stress, residual surface tension and nonlocality on 
the nonlinear vibration of single-walled carbon conveying nanotube resting on linear 
and nonlinear elastic foundation and operating in a thermo-magnetic environment. 
Equation of motion governing the vibration of the nanotube was derived using Erigen’s 
theory, Euler-Bernoulli’s theory and Hamilton’s principle. The partial differential 
equation was converted to ordinary differential equation using Galerkin’s 
decomposition method and the ordinary differential equation was solved with the aid of 
variational of iteration method. Through the parametric studies, it was revealed that the 
ratio of the nonlinear to linear frequencies increases with the negative value of the 
surface stress while it decreases with the positive value of the surface stress. At any 
given value of nonlocal parameters, the surface effect reduces for increasing in the 
length of the nanotube. ratio of the frequencies decreases with increase in the strength 
of the magnetic field, nonlocal parameter and the length of the nanotube. The natural 
frequency of the nanotube gradually approaches the nonlinear Euler–Bernoulli beam 
limit at high values of nonlocal parameter and nanotube length. nonlocal parameter 
reduces the surface effects on the ratio of the frequencies. Increase in temperature 
change at high temperature causes decrease in the frequency ratio. However, at room 
or low temperature, the frequency ratio of the hybrid nanostructure increases as the 
temperature change increases. Also, the ratio of the frequencies at low temperatures is 
lower than at high temperatures. The present work will assist in the control and design 
of carbon nanotubes operating in thermo-magnetic environment and resting on elastic 
foundations. 
 
  

1. Introduction 
After the discovery of nanostructures discovered by Iijima (1991), different studies on the utilizations 
of nanomaterials have showed the importance of carbon nanotubes (CNTs) for medical, industrial, 
electrical, thermal, electronic and mechanical applications (Abgrall and Nguyen(2008), Zhao et al. 
(2018), A. Azrar et al. (2018),  Rashidi et al. (2012)). The previous works on the vibrations analysis of 
nanotubes show some novel developments in the dynamic characterization of the nanostructures, with 
continuous and recent developments in nano-materials research (Reddy and Pang (2008), Wang (2011), 
Lim (2010), Lim and Yang (2010), Bahaadini and Hosseini (2016), Mahinzare et al. (2017), Bahaadini 
and Hosseini (2018) and Wang (2010)). However, the effects of the surface energy and initial stress 
are neglected in the studies. Indisputably, the properties of the region of the solid surface are different 
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properties from the bulk material. Also, for classical structures, surface energy-to-bulk energy ratio is 
small. However, nanostructures have large surface energy-to-bulk energy ratio and high ratio of surface 
energies to volume, elastic modulus and mechanical strength. Consequently, the mechanical 
behaviours, bending deformation and elastic waves of the nanostructures are greatly influenced. 
Therefore, the surface energy effects cannot be neglected in the dynamic behaviour analysis of 
nanostructures.  Such surface energy of nanostructures is composed of the surface tension and surface 
modulus exerted on the surface layer of nanostructures (Zhang and Meguid (2016),  Hosseini et al. 
(2016), Bahaadini et al. (2017), Wang and Feng (2007, 2009), Farshi et al. (2010), Lee and Chang 
(2011)). Using nonlocal elasticity theory, Wang (2010) analyzed surface effects on the vibration 
behaviour of carbon nanotubes. Few years later, Zhang and Meguid (2016) presented the impacts of 
surface energy on the dynamic behaviour and instability of nanobeams conveying fluids. Hosseini et 
al. (2016) studied the influence of surface energy on the nonlocal instability of cantilever piezoelectric 
carbon nanotubes conveying fluid. The combined effects of surface energy and nonlocality on the 
flutter instability of cantilevered nanotubes conveying fluid under the influence of follower forces were 
explored by Bahaadini et al. (2017). Using nonlocal elasticity theory, Wang and Feng (2007, 2009) 
investigated the effects of the surface stress on contact problems at nanoscale and proposed a 
theoretical model considering the joint effects of the elastic modulus of the surface and residual stress 
for vibration analysis on the basis of Euler-Bernoulli beam model. Lee and Chang (2010, 2011) 
confirmed the surface effect plays a significant role on vibration frequency of nano-beam through the 
Rayleigh-Ritz method. Other researchers (Guo and Zhao (2007), Feng et al. (2009), He et al. (2008a, 
2008b), Jing et al. (2006), Sharm et al. (2003), Wang et al.  (2010)) also examined the significance of 
surface stress and energy on the dynamic response and instability of nanostructures.  
Carbon nanotubes often suffer from initial stresses due to residual stress, thermal effects, surface 
effects, mismatches between the material properties of CNTs and surrounding mediums, initial external 
loads and other physical issues. The effects of initial stress on the dynamic behaviour of nanotubes 
have been studied (Selim (2009), Zhang and Wang (2006), Wang and Cai (2006), Sun and Liu (2007), 
Chen and Wang (2008), Selim (2010, 2011a, 2011b), Selim and El-Safty (2020). However, because of 
their significant in practically nano-apparatus applications, there is a need for a combined on the effects 
of surface behaviours, initial stress and nonlocality on the physical characteristics and mechanical 
behaviours of carbon nanotubes. Also, scanning through the past works and to the best of the authors’ 
knowledge, a study on simultaneous effects of surface energy and initial stress on the vibration 
characteristics of nanotubes resting of Winkler and Pasternak foundations in a thermo-magnetic 
environment has not been carried out. Therefore, in this present study, the coupled impacts of surface 
effects, initial stress and nonlocality on the nonlinear dynamic behaviour of single-walled carbon 
nanotubes resting on Winkler (Spring) and Pasternak (Shear layer) foundations in a thermal-magnetic 
environment. Erigen’s nonlocal elasticity (1972a, 1972b, 1983), Maxwell’s relations, Hamilton’s 
principle, surface effect and Euler-Bernoulli beam theories are adopted to develop the systems of 
nonlinear equations of the dynamics behaviour of the carbon nanotube. The partial differential equation 
was converted to ordinary differential equation using Galerkin’s decomposition method and the 
ordinary differential equation was solved with the aid of variational of iteration method.  Although, the 
study is majorly directed to analyze the impacts of surface, nonlocality and initial stress on the vibration 
of the nanostructures, it is known that magnetic field and temperature change/gradients can 
significantly change the vibration characteristics of nanotubes as they affect the homogeneous 
nanotubes.  
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2. Model Development  
Consider a single-walled CNT of length L and inner and outer diameters Di and Do resting on Winkler 
(Spring) and Pasternak (Shear layer) foundations as illustrated in Fig. 1.  The SWCNTs conveying a 
hot fluid and resting on elastic foundation under external applied tension, initial stress, magnetic and 
temperature fields as shown in the figure.  
 

 
Fig. 1 Carbon nanotube conveying hot fluid resting on elastic foundation  

 
2.3 Nonlocal elasticity theory 
Based on the nonlocal elasticity theory and given considerations to the nonlocal effects of higher-order 
strain gradients, the differential relations involving the stress resultants and the strains for the nanotube: 

                                                                                                        (1) 

The strain–displacement relation,  

                                                                                                                    (2) 

In case of small deformation, the strain strain–displacement relation  

                                                                                                                            (3) 

Therefore,  

                                                                                                (4) 

Multiply Eq. (4) through by zdA 

                                                                          (5) 

On integrating both sides of Eq. (8), we have 

                                                                    (6) 

Recall that the bending moment and second moment of area of the nanotube are given as 
                                                                                                                           (7) 

and  
                                                                                                                                (8) 
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Therefore, Eq. (6) can be written as 

                                                                                                       (9) 

The above Eq. (9) shows the relationship between the flexural displacement w and the bending moment 
M of the nanotube can be obtained. 
If Eq. (9) is differentiated twice, we have  

                                                                                       (10) 

Therefore,  

                                                                                     (11) 

If the effect of surface is considered, we have  

                                                                       (12) 

From the Euler beam theory,  

 (13) 

The axial force per unit length as a result fluid flow effect 

                                                                              (14) 

The axial force per unit length due to initial stress   

                                                                                                         (15) 

The axial force per unit length due to residual surface stress   

                                                                                                      (16) 

The axial force per unit length due to axial tension/support 

                                                                                       (17) 

The force per unit length due to the Winkler and Pasternak foundations is given as 

                                                                                              (18) 

The magnetic force per unit length as a result of Lorentz force.    

                                                                                                             (19) 

The axial force per unit length as a result of the thermal effect   

                                                                                                        (20) 

Substituting Eqs. (14) – (20) into Eq. (13), we have 
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                          (21) 

On putting Eq. (20) into Eq. (12), we arrived at   

                                          (22)  

 
 

Fig. 2. Effect of slip boundary condition on velocity profile Arania et al. (2016), Bahaadini and Hosseini (2016) 
 
Fig. 2 shows the effect of flow in a channel. In the fluid-conveying carbon nanotube, the condition of 
slip is satisfied since in such flow, the ratio of the mean free path of the fluid molecules relative to a 
characteristic length of the flow geometry which is the Knudsen number is larger than 10-2. 
Consequently, the velocity correction factor for the slip flow velocity is proposed by Arania et al. 
(2016), Bahaadini and Hosseini (2016) as  

                                                       (23) 

Where Kn is the Knudsen number, σv is tangential moment accommodation coefficient which is 
considered to be 0.7 for most practical purposes (Arania et al. (2016), Bahaadini and Hosseini (2016)): 

                                                                                                      (24) 
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   and B = 0.04 and b is the general slip coefficient (b = −1). 
From Eq. (23),  

                                                         (26) 

Therefore, Eq. (22) can be written as  

 

                                                                                                                                               (27) 
where the transverse area and the bending rigidity are given as 

 

 

and  

  

 

The symbol Hs is the parameter induced by the residual surface stress. is the residual surface tension, 
d and h are the nanotube internal diameter and thickness, respectively. It should be noted that the 
diameter of the nanotube can be derived from chirality indices (n, m)  

                                                                                                       (28) 

where . ”a” represents the length of the carbon-carbon bond. d is the inner diameter 
of the nanotube. 
 

3. Analytical Solutions of Nonlinear Model of Free Vibration of the nanotube  
The nonlinear term in model in Eq. (27) makes it very difficult to provide closed-form solution to the 
problem. Therefore, recourse is made to homotopy perturbation to solve the nonlinear model. In order 
to develop analytical solutions for the developed nonlinear model, the partial differential equation is 
converted to ordinary differential equation using the Galerkin’s decomposition procedure to 
decompose the spatial and temporal parts of the lateral displacement functions as  
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                                                                                                                  (29) 
Where the generalized coordinate of the system and is a trial/comparison function that will 
satisfy both the geometric and natural boundary conditions. 
Applying one-parameter Galerkin’s solution given in Eq. (29) to Eq. (27)  

                                                                                                                  (30) 

where  

 

We have the nonlinear vibration equation of the pipe as 
                                                                               (31) 
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For the simply supported pipe,  
                                                                                                                      (33a) 

where 

 

Therefore,  

                                                                                                                     (33b) 

Eq. (33) can be written as  
                                                                                          (34) 

where 

                                                                            

For an undamped simple-simple supported structures, where G = 0, we have 

                                                                                           (35)  

It can be seen from the above procedures that the apart from the fact that the Galerkin decomposition 
method decomposes governing equation of motion into spatial and temporal parts, it also helps in 
converting the space- and time-dependent partial differential equation to a time-dependent ordinary 
differential equation. The nonlinear ordinary differential equation easily be solved using numerical 
methods or approximate analytical methods. In this work, variational iteration method is adopted due 
to its simplicity and high level of accuracy. 
 
4. Method of solution: Variational iteration method 
In order to solve the nonlinear model in Eq. (35), variational iteration method is adopted in the present 
study.  The basic definitions of the method are as follows: 
The nonlinear differential equation in Eq. (35) can be written as 
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                                                                                                                                (39)  

 

The solution of Eq. (39), gives the Lagrange multiplier as  

                                                                                                                 (40) 

We can now write Eq. (40) as  

               (41)      

The equations in the integral of Eq. (41) are grouped into linear and nonlinear parts based on the 
definition of VIM.  
With the purpose of finding the periodic solution of Eq. (35), an initial approximation for zero-order 
deformation is assumed as   

                                                                                                                     (42) 

Substituting Eq. (36) into the nonlinear part of Eq. (41), gives  

                                                        (43)                                                                    

After applying trigonometric identities, Eq. (43) can be written as  

                                  (44)                                      

On collecting the like terms at the RHS of Eq. (44), one arrives at  

                                                   (45)                                                         

 eliminate the secular term requires that the coefficient of  must be equal to zero. 

consequently,  

                                                                                                       (46) 

Therefore, the zero-order nonlinear natural frequency is given as 

                                                                                                                   (47) 

Therefore, the ratio of the zero-order nonlinear natural frequency, ωo to the linear frequency, ωb  

                                                                                                                  (48) 

where 
 

Similarly, for the first-order nonlinear natural frequency, we have 
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The ratio of the first-order nonlinear frequency, ω1 to the linear frequency, ωb  
 

                                                   (50) 

    From Eqs. (48) and (50), the following facts are established:   

                                                                                                                             (51) 

and  

                                                                                                                            (52) 

In order to find the first iteration, we can write Eq. (41) as   

                    (53)                                                                                                         

     Substituting Eqs. (42) into Eq. (53), we have 

     (54)                             

Which reduces to   

                                   (55)                                        

With the aids of trigonometric identities, Eq. (55) can be written as  

             (56) 

Evaluation of the above Eq. (56) provides the first-order approximation as  

                         (57) 

Eq. (57) can be written as  

                     (58) 

From Eqs. (29) and (33b), one has 

                    (59) 
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                                                                                                                                                    (60) 
4. Results and Discussion 
With the aid of MATLAB, the results of the simulations are given in Figs. 3-12. While Fig. 3 presents 
the comparison of the results of the present study with results of numerical solution using finite 
difference method, the effects of various parameters of the model on the dynamic response of the 
single-walled carbon nanotube are also presented in the figures under various subsections in the section 
in Figs. 4-14. 
Fig. 4 illustrates the importance of surface residual stress on the vibration behaviour of the nanotube. 
It is shown that the dynamic response of the nanotube different for negative and positive values of 
surface residual stress. This establishes that the dynamic behaviour of the fluid-conveying nanotube 
depends on the sign of the residual surface stress. Indisputably, as it is shown in the figure, at any given 
adimensional amplitude, there is an increase in the frequency ratio when the negative value of the 
surface stress increases while the frequency ratio decreases when the positive value of the surface stress 
increases. This is because, the negative values of surface stress decrease the linear stiffness of the 
nanostructure while the positive values of surface stress increase the linear stiffness of the carbon 
nanotube. Also, considering the effect of surface stress, the positive surface elasticity produces 
softening effect in the nanotube, while negative surface elasticity gives stiffening influence in the 
nanotube. Therefore, it can be stated that when the surface stress is zero, the effect of surface elasticity 
is not so important. Consequently, one can infer that the surface stress alone is important and effective 
even without consideration of the surface elasticity. However, when the surface stress is nonzero, the 
surface elasticity plays a significant role in the dynamic behaviour of the nanostructure.  
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Fig. 3 Comparison between the obtained results and the numerical solution for the nonlinear vibration 

 
Fig. 4 Effect of surface residual stress per unit length on the frequency ratio of the nanotube 

 
Fig. 5 displays the significance of surface stress, nonlocality and nanobeam length on the frequency 
ratio of the fluid-conveying nanostructure. The figures show that the frequency ratio decreases with 
increase in the length and thickness ratio of the of the nanotube. It could also be stated that nonlocal 
parameter reduces the influence of the surface energy and stress on the frequency ratio. The results 
also presented that the vibration frequency of the nanotube under the consideration of the effects of 
surface energy and stress is larger than vibration frequency of the nanobeam given by the classical 
beam theory which does not consider the surface effect. Also, the figures present a clear statement that 
when the nanotube length increase, the natural frequency of the nanotube gradually approaches the 
nonlinear Euler–Bernoulli beam limit. This is as a result of decrease in the surface effect. Therefore, 
high thickness ratios and long nanotube length make the impacts of surface energy and stresses on the 
on the frequency ratio to vanish. Fig. 6 shows the effect of initial stress on the dynamic behaviour of 
the nanotube. It is depicted at any adimensional amplitude increases, there is an increase in the 
frequency ratio as the initial stress increases.  
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Fig. 5 Effects of the nanotube nonlocal parameter and length on the frequency ratio 

 
Fig. 6 Effect of initial stress on the frequency ratio of the nanotube 

 
Fig. 7 Effects of maximum amplitude and nonlocal parameter on ratio of the frequency ratio 
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Fig. 8 Effects of change in temperature on the frequency at high temperature                                             

 
Fig. 9 Effects of change in temperature on the frequency ratio at low temperature                                             

 
The nonlocal parameter is a scaling parameter which makes the small-scale effect to be accounted in 
the analysis of microstructures and nanostructures. Fig 7 depicts the effect of the nonlocality on the 
frequency ratio decrease for varying adimensional amplitude. The	fundamental frequency ratio of the 
fluid-conveying structure decreases as the nonlocal parameter increases. Also, the effect of the 
nonlocality on the frequency ratio decreases by increasing the amplitude ratio of the structure.  
The variations in the ratio of the frequencies with adimensional nonlocal parameter for different change 
in temperature are presented in Figs. 8 and 9. In Fig. 8, it is shown that increase in temperature change 
at high temperature causes decrease in the frequency ratio. However, at room or low temperature, the 
frequency ratio of the hybrid nanostructure increases as the temperature change increases as shown in 
Fig. 8. Also, the ratio of the frequencies at low temperatures is lower than at high temperatures. 
The effect of magnetic field strength on the frequency ratio of the nanotube is shown in Fig. 10. It is 
shown that the frequency ratio decreases when the strength of the magnetic field increases. Also, at 
high values of magnetic fields and amplitude of vibration, the discrepancy between the nonlinear and 
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the linear frequencies increases. A further investigation shows that the vibration of the nanotube 
approaches linear vibration when the magnetic force strength increases to a certain high value. Such 
very high value of magnetic force strength which causes great attenuation in the beam can be adopted 
as a control and instability strategy for the nonlinear vibration system.   

 
Fig. 10 Effects of magnetic field strength on the frequency ratio  

 

 
Fig. 11 Linear and nonlinear dynamic behaviour of the nanostructure 

 
Fig. 11 shows the comparison of the midpoint deflection of linear and nonlinear vibrations of the 
nanostructure. The nonlinear term causes stretching effect in the nonlinear in the nonlinear vibration. 
As stretching effect increases, the stiffness of the system increases which consequently increases in the 
natural frequency and the critical fluid velocity. Effects of nonlocal and slip parameters on the vibration 
of the nanotube is shown in Figs 12-14. It is depicted that increase in the nonlocal and slip parameters 
leads to decrease in the frequency of vibration and decrease in the critical velocity. Also, the Figures. 
depict the critical speeds corresponding to the divergence condition for different values of the system’s 
parameters for the varying nonlocal and slip parameters.  
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Fig. 12 Effects of nonlocal parameter and fluid flow velocity on the natural frequency of the nonlinear 

vibration 

 
 Fig. 13 Effects Slip parameter (Knudsen number) on the natural frequency of the nonlinear vibration 

 
Fig. 14a Effects of slip parameter on the deflection of the nonlinear vibration when Kn=0.03  
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Fig. 14b Effects of slip parameter on the deflection of the nonlinear vibration when  Kn = 0.05  

 
Conclusion 
In the current paper, the simultaneous impacts of surface elasticity, initial stress, residual surface 
tension and nonlocality on the nonlinear vibration of single-walled carbon conveying nanotube resting 
on linear and nonlinear elastic foundation and operating in a thermo-magnetic environment have been 
analyzed using variational iterative method. Through the parametric studies, it was revealed that the 

i. ratio of the nonlinear to linear frequencies increases with the negative value of the surface stress 
while it decreases with the positive value of the surface stress. At any given value of nonlocal 
parameters, the surface effect reduces for increasing in the length of the nanotube. 

ii. ratio of the frequencies decreases with increase in the strength of the magnetic field, nonlocal 
parameter and the length of the nanotube. The natural frequency of the nanotube gradually 
approaches the nonlinear Euler–Bernoulli beam limit at high values of nonlocal parameter and 
nanotube length. 

iii. nonlocal parameter reduces the surface effects on the ratio of the frequencies.  
iv. increase in temperature change at high temperature causes decrease in the frequency ratio. 

However, at room or low temperature, the frequency ratio of the hybrid nanostructure increases 
as the temperature change increases. Also, the ratio of the frequencies at low temperatures is 
lower than at high temperatures. 

v. increase in the nonlocal and slip parameters leads to decrease in the frequency of vibration and 
decrease in the critical velocity.  

The present work will assist in the control and design of carbon nanotubes operating in thermo-
magnetic environment and resting on elastic foundations. 

 
Nomenclature 

A         Area of the nanotube 
E         Modulus of Elasticity 
EI         bending rigidity 
Hs            residual surface stress 
Hx            magnetic field strength 
I           moment of area 
L          length of the nanotube 
mc            mass of tube per unit length  
N         axial/Longitudinal force 

T         change in temperature.  
t          time coordinate 
w        transverse displacement/deflection of the nanotube 
W       time-dependent parameter                 
x          axial coordinate 

 trial/comparison function 

        coefficient of thermal expansion  
η          magnetic field permeability 
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