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1. Introduction 

Due to the higher energy demand of fossil fuels and climate change awareness the use of different 

renewable energy sources is attracting a serious attention [1-3]. The industrial, commercial and domestic 

activities; the electrical energy consumption varies considerably between peak and off peak periods. 

Better power generation management can be achieved if some of the peak load could be transferred to 

the off peak load period, which can be achieved by the thermal energy storage which is widely available 

in nature in form of solar and geothermal energy.  

As a matter of fact, thermal energy can be stored as latent energy by heating and cooling a material. 

Phase change materials are mostly used to store such thermal energy [4-10]. However, their low thermal 

conductivity is one of the main problems that should be overcome [11-16]. Higher thermal conductivity 

could be achieved by using some additives with the aim of increasing the energy charging/discharging 

rates. Additive could be classified into material based carbon or metal foams. The thermal conductivity 

enhancement is the point of focus of this review. 

 

Abstract 

Recently the higher demand of fossil fuels and increasing attention of risks related to 

environmental issues have contributed to find other renewable sources of energy use to 

the different industrial and daily domestic activities. Due to this the use of phase change 

materials (PCMs) in thermal energy storage systems attract more and more attention in 

recent years due to their contribution to enhanced energy efficiency. However, their low 

thermal conductivity presents one of the issues that should be resolved. The necessity of 

increasing the thermal conductivity of PCMs is evident due to its low charging/discharging 

rates which is important during thermal cycling.  In order to overcome the issue of low 

thermal conductivity. Several studies have been developing new type of PCMs by 

introducing high thermal conductive filler such as carbon additives or metal foams. 

Carbon materials are so far the best fillers to increase the effective thermal conductivity 

of PCM since only small volume fraction is needed and they have high thermal 

conductivity and low density. The thermal conductivity enhancement using carbon 

material is the point of focus of this work. Many studies have been done on improving the 

heat transfer of PCMs. In general, the studies are divided into several categories depending 

on the types of thermal conductivity enhancers. 
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2. Thermal conductivity enhancement of phase change materials  

2.1. Thermal conductivity enhancement of phase change materials using carbon material   

2.1.1. Expanded graphite 

Xu et al. [15] prepared LiNO3 − KCl − NaNO3/EG composite PCM using the capillary method with 5 

wt%, 10 wt%, 15 wt%, 20 wt%, and 25 wt% EG. At 25wt% mass fraction of EG, they found out that no 

leakage was observed. Using the SEM images, it has been proven that LiNO3 − KCl − NaNO3 

composites were intensely absorbed by EG. In their experiments, the thermal conductivity and the 

compress density show a strong linear relationship. However, the thermal conductivity of the eutectic 

salt under a compress density of 1.482g/cm3 was 1.608W/mK. When the compress density of the 

composite PCM varies from 0.9 to 2 g/cm3; the thermal conductivity varies from 18.57 to 31.53 W/mK 

which was 11.5-19.6 higher than that of the pure salt. Zichen et al. [16] use also EG as a high thermal 

conductivity enhancer and MgCl2. 6H2O as PCM. It has low thermal conductivity, liquid leakage, high 

supercooling and poor thermal reliability after numerous thermal cycles. To overcome those issue, EG 

with different mass fraction (9 wt%, 13 wt%, 16.67 wt%, and 20 wt%) was mixed withMgCl2. 6H2O. 

The thermal conductivity data of composite PCMs with 9 wt%, 13 wt%, 16.67 wt%, and 20 wt% of EG 

was respectively measured to be 0.942 W/m K, 1.053 W/m K, 1.354 W/m K and 1.658 W/m K. Also, 

DSC analysis showed that the addition of EG decreased the degree of supercooling by 29.4°C. Zhong et 

al [17] prepared three kinds of porous composite phase change materials using three types of binary salts 

( LiNO3 − KCl, LiNO3 − NaNO3  and  LiNO3 − NaCl ) as the phase change materials and expanded 

graphite as the high thermal conductive additive. The thermal conductivity was significantly increased. 

It is analyzed that, after impregnation of the salt into the EG, the thermal conductivity of LiNO3 − KCl 
is intensified by 5.0 times; LiNO3 − NaNO3 , 6.9 times; and  LiNO3 − NaCl, 4.9 times. Yuping et al. [18] 

developed a novel shape stabilized phase change material by impregnating hydrated salts into expanded 

graphite. He found out that the thermal conductivity of hydrated salts/EG was high as 3.615 W/mK 

(uncoated) and 3.646 W/mK (coated with paraffin wax). Heking et al. [19] prepared NaCl-CaCl2/EG 

composite phase change materials at different fraction of EG. It is found that the thermal conductivity 

increased linearly with the content of EG and the density of the composite. At 20 wt% of EG and 2 

g/cm3, the thermal conductivity was 4.937 W/mK higher which 701.1 % higher than binary eutectic 

chloride. Huang et al. [20] prepared a LiNO3/KCl − EG composite phase change material. Increasing the 

content of EG in the composite from 10% to 30%, the thermal conductivity has been improved from 

1.85 times to 6.65 times respectively. Jumbing et al. [21], prepared NaNO3-KNO3/EG with different 

mass rates of EG. The results showed that the addition of EG have give a great rise to thermal 

conductivity coefficient which has increased to 4.884 W/mK. 
 

2.1.2. Carbon fiber 

Recently, carbon materials have become one of the best fillers for enhancing the thermal conductivity, 

due to the fact that they possess high thermal conductivity and low density. There have been many 

studies on the preparation of phase change material composites using carbon fiber [22-25]. Zhao et al. 

[26] used graphite fiber to prepare Carbon bonded carbon fiber (CBCF) monoliths. The CBCF were 

filled with paraffin wax to for the PCM composite. The in-plane thermal conductivity of the PCM 

composite was significantly increased up to 57 times over the pure wax, while the out-of-plane thermal 

conductivity was also increased by 3.7 to 5.5 times. In addition, the improvements in thermal 

conductivity showed almost linear relationship with the volume fraction of carbon fibers in the PCM 

composites.Takahiro et al. [27] prepared a phase change material composite with a percolating network 

of Carbon Fiber. Two types of methods have been used: The conventional melting dispersion method 

and a novel hot press method. Erythritol was chosen as the phase change material and carbon fiber as 

the high thermal conductive filler. It is found that the Phase material composite prepared by the hot press 

method presents a high thermal conductivity; furthermore, It is found that the Phase material composite 

prepared by  the hot press method presents a high thermal conductivity, furthermore, a percolating filler 

network can be easily formed in this case as it is shown in Fig.1. Frusteri et al. [28] investigated the 

influence of carbon fiber on the thermal conductivity enhancement of an organic PCM44. Different 
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lengths of carbon fiber have been randomly distributed and the thermal conductivity has been measured. 

It was demonstrated that a linear relationship exists between the carbon fiber content and the thermal 

conductivity. The best results were obtained using a micro-fiber (length=0.2mm).  

 

 
Figure 1: EDS mapping from the cross section of the PCCs: (a) a lower packing ratio of 0.59 and (b) a higher 

packing ratio of 0.71 [27] 

2.1.3. Carbon nanotubes 

Tingting et al. [29] reported the preparation of a new polyethylene glycol (PEG)/diatomite form-stable 

phase change composite (fs-PCC) with single-walled carbon nanotubes (SWCNs) as nano-additive. The 

obtained results showed that the thermal conductivity of the PCC has been increased from 0.24 W/mK 

in case of pure PEG to 0.87 W/mK with a small fraction off SWCNTS (2wt%). Zhang et al. [30] studied 

the effect of the introduction of CNTs as a additive for improving the thermal conductivity of paraffin-

carbon nanotubes/expanded perlite form-stable composite phase change materials (PA-CNTs/EP FS-

CPCMs). The vacuum impregnation method was used to prepare the composite with different mass 

fraction of CNT. The thermal conductivity of PA-CNTs/EP FSCPCMs5.27 (0.516Wm−1 K−1) was 4.82 

times that of PA-CNTs/EP FS-CPCMs0. The thermal storage and release properties of PA-CNTs/EP 

FS-CPCMs were significantly improved as compared with those of PACNTs/EP FS-CPCMs0. Feng et 

al. [31] prepared a new composite where the MWCNTs was chosen as the high thermal conductivity 

enhancer, Na2CO3 was used as phase change material and MgO as a supporting material. With the 

increase of MWCNTS amount and temperature of use, the thermal conductivity has been significantly 

increased. Feng et al. [32] reported the preparation of Na2CO3/MgO composite phase change materials 

with added Multi walled carbon nanotubes (MWCNTs). Na2CO3 was used as phase change material and 

MgO as a supporting material. It is found that the thermal conductivity increased with an increase of the 

MWCNTS loading and an increase in the temperature of use. 

In order to improve the performance of salt phase change materials, Tao et al. [33] prepared carbonate 

salt/nanomaterial composite phase change material using four kinds of carbon nanometerials with 

different microstructure as Fig. 2 illustrates. The results show that nanomaterial with columnar structure 

such as single walled carbon nanotubes (SWCNT) are more efficient at enhancing the thermal 

conductivity of the PCM salt up to 56.98%. 

2.1.4. Comparison of different types of carbon additives: 

The comparison of the thermal conductivity enhancement using the different types of carbon 

additives are listed in Table 1. The following conclusions can be drawn: 

 The thermal conductivity is significantly increased in case of high aspect ratio of carbon 

additive  
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 The addition of small amount of CNTs can contribute to the larger enhancement of 

thermal conductivity  

  The EG and graphite powder are promising additives to enhance the thermal 

conductivity  

 

Figure 2:  Carbon nanomaterial microstructure by SEM. [33] 

Table 1: Comparison of the thermal conductivity enhancement with some types of carbon additives 

Carbon additive  PCM kPCM(W/m.K) Fraction  kPCC(W/m.K) Increase (%) 

 

 

 

Expanded 

Graphite 

Eutectic LiNO3/

KCl [20] 

1.749 30 wt% 11.63 665 

Ternary eutectic 

chloride [34] 

1.174 5 wt% 2.084 178 

Form stable 

PCM [35] 

0.43 20 wt% 4.59 1067 

Carbon fiber  Erythritol [27] 0.733 25 vol% ≈30 4000 

Grafted CNTs Paraffin [36] 0.2312 4 wt% 0.7903 342 

Short SWCNT Water [37] 0.580 0.48 vol% 0.604 104 

Long SWCNT Water [37] 0.580 0.48 vol% 0.627 108 

MWCNT Water [37] 0.580 0.48 vol% 0.598 103 

Graphite powder  Bakelite [38] 1.4 30 vol% 4.84 346 

Graphene  Paraffin [39] 0.25 10 wt% 2.7 1080 

 
Table 2: Comparison of the thermal conductivity enhancement with some types of metal additives 

Metal  PCM kPCM(W/m.K) Fraction  kPCC(W/m.K) Increase (%) 

Copper foam[40] Paraffin 0.354 88.89 % 16.01 4500 

Nickel foam [40] Paraffin 0.354 90.61 % 2.33 658 

𝛽-AIN powder 

[41] 

Polyethylene 

glycol 

0.2985 30 wt% 0.7661 257% 

Al [42] Paraffin 0.25 9 wt% 5 2000% 
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2.2. Thermal conductivity enhancement of phase change materials using metal foam 

Recently, more interest was given to the development of high thermal conductive PCMs using metal 

foams. High thermal conductivity, porosity and strong mixing capability are the main properties of metal 

foams which make it as one of the most promising high thermal conducting additives. Table 2 lists some 

of the experimental results.  

Xiao et al [43] prepared paraffin/metal foam composite PCM where copper and nickel were the metallic 

foam matrix. The results show that the thermal conductivity of the paraffin increased three times more 

than the pure paraffin. Thapa et al [44] used the copper foam as the high thermal conductive filler and 

icosane wax as the PCM for low thermal energy storage application. The thermal conductivity of the 

composite was 3.78 W/mK which is higher than that of the pure icosane wax. 

Bauer and Wirtz [45] developed a plate like structural thermal energy storage composite consisting of a 

central core of aluminum foam packed with PCM. The effective thermal conductivity of the composite 

is significantly increased. Jiang et al. [46] prepared two kinds of shape-stabilized PCMs composites 

using Al foam impregnated with paraffin or stearic acid and the results show that the PCMs were well 

impregnated into the Al foam because with no crack appearing on the surface of the PCMs. 

Li et al [47] prepared a salt hydrate/copper foam composite phase change material using   Sodium acetate 

trihydrate (SAT) as thermal energy storage phase change material. The thermal conductivity of copper 

foam/SAT composite PCM is about 11 times higher than that of pure SAT. Moreover, the charging and 

discharging times can be reduced significantly. Additionally, the charging time is only 40% of that of 

the pure SAT. Huang et al [48] fabricated Myristyl alcohol (MA)/metal foam composite phase change 

materials (CPCMs) by vacuum melting infiltration of nickel foam and copper foam; MA acts as the 

PCM. Effects of pore size and thermal properties were analyzed and compared. There was reported 

inverse relation between pore diameters. The thermal conductivity of the MA/nickel foam and 

MA/copper foam was increased by 1.80 and 7.51 times respectively as compared to pure MA.   

Metal salts are another form of metallic additives with high thermal conductivity and reliable stability.  

Fauzi et al. [49] found that adding 10%  sodium laurate to Myristic acid (MA)/palmitic acid (PA) eutectic 

mixture leads to the increase of thermal conductivity from 0.225 to 0.235 W/m. K. Wang et al. [41]  

prepared a high thermal conductivity form-stable  PCM by blending polyethylene glycol, silica gel and 

β-Aluminum nitride  (β-AIN) powder. The thermal conductivity of the composite PCMs increased from 

0.2985 W/m.K (pure polyethylene glycol) to 0.7661W/m.K when the amount of β-AIN was 30 wt%. 
 

2.3. Comparison of different ways to enhance the thermal conductivity of Phase change materials  
Among the methods mentioned in our review we can positively opine that using the carbon additives 

could be a good choice to enhance the thermal conductivity due to their low density, thermal stability 

and diversity. As for metal additives, they have a higher thermal conductivity enhancement, but their 

use is limited due to their instability during thermal cycling. However, the selection of those 

enhancement methods is based on the price, experimental conditions and reliability.  
 

Conclusions and outlook  

A review of experimental work to enhance the thermal conductivity of phase change materials was 

discussed. The actual review presents different approaches to improve the thermal conductivity, using 

carbon additives such as: expanded graphite, carbon fiber, graphene, etc or metal additives like copper 

foam, nickel foam, etc. in both categories, the thermal conductivity of phase change material composites 

has been enhanced. However, the selection of any additive is based on the stability of both components 

(PCM and additive) in the composite, the economic costs and environmental impact etc. 

As a matter fact, we believe that the wettability of PCM on the additive surface is also an important 

parameter that should be taken by consideration before preparing PCM/additive composite. In literature, 

there are few studies on the wettability of high thermal conductivity enhancer (carbon additives or metals 

foams) by PCM. The preparation of new material with good wetting could be a novel research idea and 

approach. 
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