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Abstract

A numerical study concerning pulsatile flows of plastic fluids through isotropy elastic ducts is presented. The
objective is to investigate the effects of elasticity of pipe wall material for an Ostwald fluid. An implicit volume
method is used to solve the equations; we determine the pressure, the radial velocity, the axial velocity and the
flow rate distributions. This study can be considered as a step in modeling of flow in blood vessels, may also
contribute to other important fields such as water desalination or gel filtration.
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Nomenclatures

W, : Velocity characteristic of the flow in the axial direction;
T, = 27 . The time tracking of the phenomenon;
Lo . Length of the conduit,
® : Pulsation of the phenomenon;
n : Newtonian viscosity;
X, . Position vector of the particle;
Vs . Instantaneous velocity;
R = LoReWo Reynolds number;
n

f=R, | L0 Womersley number.

’ To.n

1. Introduction

The vast majority of work on the deformable fluid flows in pipes is designed to model the blood flow in
different sites of the vascular network. These both theoretical and experimental studies of blood flows lead to
select three types of settings namely: - the parameters related to the nature of the fluid chosen to model the
behavior of blood. These appear in the equation called the rheological behavior of the fluid, either obeys
Newton's law [1] or laws to non - Newtonian type Casson [2], Ostwald [3], Quemada [4] or generalized
Bingham [5]. -the parameters characterizing the nature and geometry of the duct wall where the flow occurs;
they operate both in terms of fluid and in terms of the structure. They impose on the flow; fine modeling of
real flows, though often taking account of simplifying assumptions, leads to very complex equations; these
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complexities come mainly from the geometrical conditions which limit the flow [6-8] -the parameters related
to hydrodynamic conditions [9-10]. The originality of this study comes from the simultaneous consideration
of two-dimensional characters and non-permanent flow, taking into account the terms of inertia, the nonlinear
behavior of the fluid (Ostwaldian fluid) and elastic character of the wall of the pipe. This approach, which
only concerns the modeling of blood flow at the small circulation, is carried out by analytical and numerical
means. The phenomena analyzed are related to periodic regimes. Numerical code developments enable us to
study further the effect of the rheological parameters of the fluid and the wall on all of the flow. To illustrate
these effects, we presented the evolution of pressure profiles and distributions of flow rate in the pipe.

2. Mathematical formulation

Modeling of blood flow is very delicate. In these flows takes place a large number of various kinds of
parameters. One can describe the movement of a fluid such as blood by a set of partial differential equations
derived from the fundamental laws of mechanics, that is to say, the laws of conservation of mass (continuity
equation) the quantity of motion (momentum equation), to ask for a completely fluid dynamics problem. In
the framework of our study, the fluid will be considered incompressible, non-Newtonian and the flow non-
permanent and laminar.

3. Rheological behavior of the fluid
In our case the equations of conservation is written as follows:
Conservation of mass:

22 [ru]+ 2 [w] -0 (1)

Momentum equation:

oV _ _ 1 — s 1
E—O—(V.V).V :—;dlv( p)+ f +;d|v(r) (2)

4. Adimensionnalisation and simplification of equations

For the purpose of highlight dimensionless flow characteristics and whose order of magnitude for the
intended application can measure the relative importance of different contributions, we introduce the
following dimensionless quantities:

P=l 2=l f=L =Y o=2h
RO LO TO WO WO I:20
2
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The continuity equation is written in the form:
10 0
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The momentum equation:
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In the framework of the application envisaged, the geometrical form factor & is very small, so we can neglect
the terms c2or more, the terms re =, and ¢, as representing the force of gravity along the direction z can be
assumed to be negligible.

In the case of a deformable wall and due to the variation of the geometric boundary of the flow following the
axisoz, it is more convenient to effect a change of variables as follows:

- or 0<x<1

R
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This system of equations is written as following:

119(xua"), ow) x[arao(W)]_, (5)
RX &X 02 R| a2 ox |
oP B
ox (6)
ﬁz—ag\ﬁ*)fé ﬁzﬂaiw* :f@Jr%lg x.ﬁ:[aiwj
t R ot ox 072 R* XoXx OX (7)
To the apparent viscosity, we adopt the model of Ostwald namely:
G OW K Jow " ow
*ox R™| ox ox
(8)

5. Integrals equation system

The pressure gradient was unknown along the duct; the system of local equations can be solved separately, for
it is added to it the system of integral equations of flow. By multiplying the local equations (5) and (7) by 2 x
and integrating from 0 to 1, we obtain:

2 0Q oP 2,32 OR 2
pre_® R, 2, (©)
ot oz R ot R
2
0z Rege ot oz

1 . . . .
Where g -2 I xwdx 1S the instantaneous overall flow rate through the section of the duct considered, and
0

PR (%)
P r Uax Jxa the wall shear stress.

6. Dynamics of the particle
For the position of the particle, we have:
Determining the position of a spherical particle and assumed non-deformable well-defined size, moving inside
the laminar and unsteady flow of the fluid under consideration, is obtained by integration of the following
kinematic equation:
X (11)
dt P

« For the momentum, we have:
The equation that we have adopted is that proposed by Odar and Hamilton to which we add the lift forces
induced by shear [15], we get:

7D 4V, 1 2D o i oy 7D} - aDidV, oV 12
e | U e G LR s ey (42
The coefficient of accelerationC , , is determined using the following equation [13-14]:
0.066
C,=105-—
Az +0.12
. - —[2
or. N
~ 2
vy v
Pl dt dt

The drag coefficientC , is a function of the Reynolds number R, , whether the slip of the smooth sphere is
assumed. We have adopted, as part of our study, the wording proposed by Schiller and Newman [15]:
Co = 22 fir0.15R, %]

€g

This relationship is valid for g <1000
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The projection, along the axes of the cylindrical coordinates, equations (5) and (6) lead to:

dX,, B

dt " (13)
dX

=V

dt  ” (14)
0} W, 1D e, 70 U

6 (pp +Cop) dt 2C P VH(UP U)+CAP 6 dt (15)
D? aw, - D D3 dw
%( P+Cur) @t 2 p_VH(WP_W)-l—”(sP(pP_p)g+CApﬂ Sl

6 dt (16)

Where: %= %= are respectively radial and axial positions of the particle,Y:, W, the radial and axial
velocities of the particle and U, W the radial and axial fluid velocity.

7. Method of resolution
The equations obtained previously do not admit analytical solutions, so the use of numerical methods appears
mandatory. This method requires two steps: mesh and discretization [16-30].

e Discretization

The axial velocity:
By multiplying equation (7) by the volume of control (dxdz) and integrating along the length of time interval
dt, it follows that:

([ 52 ( )dxdzdt s [ 2 OROW :|dxdzdt ——m'—dxdzdt [Il} F;LZ %%[x.ﬁ;[%ﬂdxdzdf

The equatlon can therefore be written in the following form:
dt+t dt+t A 4 dt+t
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The velocity of the flow

By applying the volume differences method for equation (9), the algebraic equation can therefore be written

in the following form:

Qui=[- P L 2y (Pl [ 2 287 Ry
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(18)
The radius of the conduit:
By applying the volume differences method for equation (10), we obtain:
QET)dt t+dt 2ﬂ2 szgi) B Qt(]—gi) t+dt QE-;)dt t+dt
[ Az |RGDT Roaat 2Az RO *| ~7x JRGD=O
(19)
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The pressure:
The pressure is determined using the following equation:

p() =R

ext

The position of the particle:
The equation (13) becomes:

m
W: f(er)

With; *w)=Vo

According to the Runge-Kutta method, this equation becomes:

dt+t

t
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And:
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o Equation (14) becomes:

With: f(Xpp) =Vip

According to the Runge-Kutta method, this equation is:
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With:
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According to the Runge-Kutta method, this equation is:
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According to the Runge-Kutta method, this equation is:
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8. Results

In Figure 1, we illustrate the pressure distribution for two values of the fluid behavior index, n = 0.68 and n =
1, corresponding to an Ostwald fluid for the first and for a Newtonian fluid for the second.

It can be seen that a decrease of n, resulting in a more pronounced shear thinning, is accompanied by a
decrease in apparent viscosity resulting in a decrease of the pressure values. We find similar results to those
obtained by other authors [11-12, 16].
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Figure 1: The pressure profiles as a function of the axial variable, z, at time T/ 2
for two values of the behavior index of the fluid, n

In Figure 2, we have illustrated the flow rate profile for two values of the fluid behavior index, n = 0.68 and
n=0.54.

It can be seen that a decrease of n, resulting in a more pronounced shear thinning, is accompanied by a
decrease in apparent viscosity resulting in an increase of the values of the flow rate. We find qualitatively
similar results to those obtained by other authors [11, 16].
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Figure 2: Profile of the flow rate as a function of the axial variable, z, at time T/ 2
for two values of the behavior index of the fluid, n

In Figure 3 is shown the profile of pressure, there is an increase in the consistency of the fluid, k, which
causes an increase in apparent viscosity resulting in an increase in pressure values. These results are
qualitatively similar to those obtained by other authors [11-12].
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Figure 3: the pressure profiles as a function of the axial variable, z, attime T / 2
for two values of the consistency of the fluid, K.

In figure 4, there is a decrease in the consistency of the fluid leads to an increase of values of the flow rate
during a period.
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Figure 4: Profiles of the flow rate as a function of the axial variable, z, at time T/ 2
for two values of the consistency of the fluid, K

The 5 and 6 show the evolution of the pressure profile and flow rate for two values of the angle of the cone
¥ =0.015rd and ¥ = 0.025 = 0.015 rd.

3443



J. Mater. Environ. Sci. 7 (9) (2016) 3437-3446 Gueraoui et al.
ISSN : 2028-2508
CODEN: JMESC

We can see in figure 5, a decrease in ¥ causes a reduction of pressure values during a period, but in figure 6,

we can note that the values of the flow rate increase when ¥ decreases. This is due to the increase of the
section of tube.
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Figure 5: The pressure profiles as a function of the axial variable, z, at time T/ 2
for two values of the apex angle of the cone, ¥
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Figure 6: Profiles of the flow rate as a function of the axial variable, z, at time T/ 2
for two values of the apex angle of the cone, ¥

We study in figures 7 and 8 the influence of the elasticity of the wall on the pressure distribution and the flow
rate.

It is noted that an increase of elasticity coefficient of the wall results in a decrease of the Young's modulus in
a period, and therefore to a greater deformability of the wall and therefore to an increase in pressure values
and the flow rate. These results are qualitatively similar to those obtained by other authors [9].
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Figure 7: Pressure profiles in function of the axial variable, z, at time T/ 2
for two values of the coefficient of elasticity of the wall,
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Figure 8: Flow velocity profiles as a function of the axial variable, z, at time T/ 2
for two values of the coefficient of elasticity of the wall, a

Conclusion

The objective we have set for ourselves consisted in proposing a model of mono-phase flow of non-
Newtonian fluid in conduct with elastic wall. This study focuses on applications that can be made in
hemodynamic more particularly in the microcirculatory system. Theoretical and numerical studies using
Volume differences method implicit scheme were used to determine the pressure profile and the profile of the
pipe with elastic wall.

We studied the influence of rheological parameters of the fluid (K consistency and behavior index n), and
rheological parameters of the duct (o coefficient of elasticity of the wall, ¥ the apex angle of the cone). One
can able to discern the importance of these parameters on the flow in a part of the microcirculatory system.
But, we must note that many more research is needed to deal satisfactorily a subject of such importance.
Indeed, we limited ourselves to the consideration of an elastic and impermeable pipe wall.
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