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Abstract

in this paper, free vibration of FGM thin cylindrical shells under non uniform linear and nonlinear internal
pressure is investigated and the impact of non-uniform internal pressure on free vibrations and natural
frequencies have been analyzed. The boundary conditions used in this study were two simple supported and in
order to derive the equations, the theory of sanders thin shells and Rayleigh-Ritz method is used. The effect of
various parameters on natural frequencies and free vibrations of shells under internal pressure, such as linear
and nonlinear pressure profile, material, thickness to radius and the ratio of length to diameter have been
investigated. Additionally, the effect of internal pressure on the natural frequencies profile, in different
longitudinal modes and environment has been derived. The results of this study validated by data in the
literature and ABAQUS software that reflects the accuracy and can be used as a reference for future designers
and researchers.
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1. Introduction

Cylindrical shells have many applications such as pressure vessels, structures for aerospace, aircraft, marine,
etc. One of the most important parameters in the design of shells, is stability and vibration of them against the
applied loads. In recent years, functionally targeted materials (FGM) for use in environments with high
temperatures have been considered. In fact, these materials are composites that made of metals and ceramics
which the thermal insulation capability and good toughness of ceramics and metals can be used at the same
time. FGM materials are inhomogeneous that their properties change continuously and gradually from one level
to another level. This operation can be applied by changing the volume ratio with a special equation. The
research has been done on the field of free vibration of FGM cylindrical shells in recent years. Levy and Lam
[1] investigated the effect of power factor and thickness of the shells on natural frequencies by studying the
vibration of FGM shells. Haddadpor et al., [2] analyzed free vibrations of shells which made of targeted
materials with heat effect and boundary conditions. Shah and mohammad [3] investigated the vibrations of
FGM cylindrical shells with exponential function by Rayleigh -Ritz method and detected the impact of changing
the parameters of this function on the natural frequencies. Patel et al.,[4] investigated the vibration of elliptical
shells using the theory of high order and studied the impact of boundary conditions and geometrical parameters
on natural frequencies. Sofia [5] studied buckling of cone shell under axial harmonic load. Tian et al.,[6] studied
buckling and vibration of isotropic shells under non uniform axial and radial using Rayleigh- Ritz method.
Ansari and Darvize performed dynamic analysis of FGM skins in different boundary conditions and extracted
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natural frequencies in different conditions. Mohammadi and Sadegi [8] investigated the effect of pressure and
temperature on free vibration and buckling of shells. In this study, effect of simultaneous pressure and
temperature on free vibration is studied. Isvandzibaei [12] investigated the effect of internal uniform pressure on
vibration of shells which made by graded material in different boundary conditions. They studied the effect of
internal uniform pressure, number and position of rings on natural frequencies. At the listed sources, only the
vibration of FGM shells under uniform internal pressure and isotropic shells under non uniform internal
pressure have been investigated. However, in this article, vibration of cylindrical FGM shells with simple
supported boundary conditions under non uniform internal pressure is studied using energy method. In order to
derive the equations of the theory of thin shells, sanders and Rayleigh Ritz methods are used. To make simple
supported conditions, the components of displacement (in longitudinal direction, circumferential and radial)
considered as a combination of sine and cosine functions. The effect of various parameters such as pressure
profiles, the ratio of thickness to diameter, radius and material characteristics on natural frequencies of shells
investigated and results of this study verified by ABAQUS software that is an indicator of accuracy.

2. FGM material properties

FGM material are made from a combination of two or more materials. Most of these materials used in high
temperature environments and properties of these materials define as a function of temperature according to the
following equation:

P=Py(P_;T ' +1+PT+P,T? +P;T3) (1)

That Py<P_; <P; <P, and P;constants at temperature T in Kelvin scale and are fixed for any specific matter. The
characteristics of FGM, P related to ingredient properties and volume ratio and defined as follows:

)

P&V; in above equation are the characteristics of materials and volume fraction j. total volume ratio of
materials is equal to one.

For cylindrical shell of constant thickness h which zero surface is placed in the middle surface of the shell, the
volume ratio is expressed as follows:

(4)

Where N is the power law (0 < N < o0).
For shell which consist of two materials, the modulus of elasticity E, Poisson’s ratio v and density p derived of
the following relationships.

()

According to this equation, in the inner surface of the shell, z = —h/2, the values of E =E, «w=v,; ¢p =p,
and so forz = h/2 , E = E{ <v = v; ¢p = p;. The material properties changing continuously from material 2 on
inner surface of the shell to the material 1 of outer surface of the shell. Cylindrical shell made of FGM, is the
membrane of non-homogeneous material which is made of homogenous and isotropic materials. For this shell
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(in contrast to fiber reinforced material which the effect of shear deformation is significant because of high
elastic modulus), if the thickness to radios ratio is less than 0.5, it will be possible to use theory of thin shells.In
the next section, a formulation, based on Sanders’s shell theory, for a functionally graded cylindrical shell is
carried out.

3. Theory and equations

The main purpose of this section is to obtain the equations of motion for FGM thin cylindrical shell shown in
figure 1, with uniform thickness h, radius R, length L and mass density p . The coordinates of axis of the
cylinder is located in the middle surface of the membrane. Membrane displacement in the longitudinal,
circumferential and radial direction (x<6<z) are shown by u «v and w and velocity vectors and displacements of a
point on the shell are shown byVandr.velocity vector at each point of the shell is determined by following
equation.

. (6)
V=T
In this equation, the displacement vector t is as follow.
)
qx)
Section A-A
Figure 1: Cylindrical shell with non-uniform radial load
That T s jandk are unit vectors in xand #andz directions, respectively.
By combining the equation (7) by equation (6), the velocity vector is obtained as follow:
V =ul+vj+ wk ®)
In this equation wandvandu are velocity components in three main directions. Kinetic energy of the shell
expressed by following equation. [10]
1 L r2m o
T=—h_[ f pV.VR d6 dx 9
2 Jo Jo
In the above equation, terms of rotational inertia ignored because of thin membrane of the shell.
By putting the equation (8) in equation (9) kinetic energy of the shell can be obtained as follow:
1 L 21
T=§hj j p[t? + V2 + Ww?]R d6 dx (10)
0 Jo
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Potential energy by pressure describes as follow:

L p2m q(X) aZW
Upr:—.’;fo T W+wwd9dx (11)
Shell tensile and flexural strain energy can be written as follow [10]
1 L /21
U, =—f f e'[S]e R d6 dx (12)
2Jy Jo
In this equation S is the stiffness matrix and strain vector € as follow:
' = {ere; Yk ky 21} (13)

In this equation middle surface strain determined by el <e2andy and the middle surface curvature determined by

k1 <k2andt. Based on the theory of sanders thin shells, these values are calculated as follows. [10]
du

3 9%w (14)

1 9’w  dv
= "w\ae? ae
B 9°w  30v
"7 TR\0x0¢  20x) 4RZ0¢
0
0 1

0 0 Ag 0 0 B66|
S| = 15
5] By Biz 0 Dyp D O (15)
Biz Bz 0 Dip Dy O
0 0 Begs 0 0 Dge

In this matrix, the tensile stiffness Aij, flexural rigidity Dij and torsional rigidity Bij are obtained by these
integral equations.

h/2
(A, By, Dyy) = f ) 0;(1,Z,Z%)dz (16)
-h/2
Reduced stiffness matrix Q and the verses determines by (17)
E

Q11 = 02 =12
vE

iz =7

)
Qo6 = 2(1+v)
Displacement functions, u, and W considered as follow:
u = A, cos(Ax) cos(nb + wt)
v = B, sin(Ax) sin(n6 + wt)
w = Cp, Sin(Ax) cos(nd + wt)
A=mm/L

(17)

(18)
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Apn » Bmnandc,,,, are constant mode of shape coefficient, m is the number of half — wave longitudinal wave and
n is the number of half —wave circumferential waves. By substituting equation (16)and (17) in (15) stiffness
matrix of shell and by substituting the equation (18) in sanders strain equations, the strain vector calculated and
then according to equation (12) we can obtain potential energy of the shell. The total energy of system is as
follow:

N=T-U, —U, (19)

Using the Ritz minimizing method,
o
FIN
The following matrix relationship extracted:

0 A= Ann »Bmn »Cin (20)

011 G122 X137TA 0
01 Oz Q23] |B| = |0 (21)
a31 O3z O33]1C 0

a;; are the constants. For obtaining non-trivial answerof above equations, the determinant matrix must be zero.
011 012 043
021 Oz 033
031 O3z 033

=0 (22)

After expanding the equation (22), the characteristic equations of membrane frequencies can be obtain as
follow:

Blwgm + B3wﬁm + B4wr3;m + BSwim + B6wmn + Bl =0 (23)

After solving the equation (23) using Newton-Raphson method, the natural frequencies of shell will be
extracted.

4. Materials
Material properties listed in this study is expressed in table 1.

Tablel:Material properties of FGM

material E(N m?)x 10" v p(kg m*®)x10°
Stainless steel 207788 0317756 8.166
Zr 16806296 0297996 5.7
Ni 205098 0.31 8.9
Al,O; 38 0.3 3.8

5. Non - uniform internal pressure
Non-uniform internal pressure can defined as following equation and some forms of loading are shown in figure
land 3.

409 = Prax (1 1 (E)k> (25)

In these figures, the horizontal axis represents a dimensionless number of length (x/L) and the vertical axis
represents the number of dimensionless of pressure (q(X)/Pmax)-

Figure 2 shows the internal pressure profile line (k=1) with different slopes p=2,1.5,1,0.5, 0 and figure 3 shows
the non-linear pressure profile (u =1) with variable power equals to k= 2,3,6 and 10 .
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6. Results and discussion
To ensure the accuracy of the results obtained in this study, natural frequencies of FGM cylindrical shell
compared with the results of Matsunaga in table 2, which reflects the accuracy of results. The natural
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Figure 2: Linear internal pressure profile
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Figure 3: Non-linear internal pressure profile, p=1

frequencies for shells under uniform internal pressure [11] were compared in table 3.

Table2: comparison of changes of lowest natural frequencies (Hz) with
reference [9], (m=1 L/R=20, inner surface of nickel and outer surface of

steel)

h/R h/R n N=1 N=2 N=5 N=15
Ref. [9] 0.001 3 27235 27015 2.6788 26635
Present ' 3 27236 27014 26789 26635
Ref. [9] | 005 2 53627 53192 52747 52449
Present ' 2 53627 53192 52746 52449
Ref. [9] 0.010 2 77286 76664 76024 75581
Present ' 2 77286 76663 76024 75582
Ref. [9] 0.030 1 132119 131042 129984 129333
Present ' 1 132120 131042 129985 129334
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Figure 4 shows the effect of FGM membrane ingredients on the natural frequencies. As it is clear from the
figure, the highest natural frequency is respectively to alumina shell- stainless steel, zirconia-alumina,
zirconium-stainless steel and nickel- stainless steel. Higher natural frequency of alumina-stainless steel in
comparison of other components is because of high elastic modulus and low density of alumina.

Table 3: comparison of shell natural frequency under uniform internal pressure of 1 bar with reference [11]
and software, (L/R=20, m=1, h/R=0.002, inner surface of nickel and outer surface of steel)

n 1 2 3 4 5 6 7 8 9 10
Ref. [11] 13.21 19.37 32.94 46.3 59.59 72.97 86.56 100.46 114.72 129.41
ABAQUS | 131415 | 193525 | 329387 | 463012 | 595954 | 729774 | 865769 | 1004905 | 1147824 | 1295138
Present | 132111 | 194714 | 331077 | 465355 | 598794 | 738183 | 869706 | 1009215 | 1152381 | 1299768
300
- Zirconium-Stainless Steel
¥ 250 . .
z Nickel-Stainless Steel
§ 200 lumina-Stainfess-Steel “—
[ ] - . :
;g)_ 150 R\ Zirconium-Alumina 4
= 1
T 100 \ T e
I \ |
2 50 ~ | —
0 T |
0 1 2 3 4 5 6 7 8 9 10
n

Figure4:The natural frequencies of different combinations of FGM cylindrical shell in number of
circumferential wave (n).

In table 4, the natural frequencies of FGM cylindrical shell under pressure up to 100 kPa, with the ratio of length
to diameter 5 and ratio of thickness to radius of 0.005 is shown with inner surface of zirconium and outer
surface of nickel for different power functions of uniform and non-uniform internal pressures.

As is clear from the table increasing the power factor volume (N) natural frequency is reduced. Also for all
loading conditions, the first natural frequency decreased and after reaching the base frequency rises again.
Circumferential wave number (n) which the base frequency occurs at that number, varied by changing the load
profile and by more closing of uniform pressure to the base frequency, the base frequency happens in lower
circumferential number. With increasing pressure function coefficient (p) natural frequency decreases and with
increasing power function of pressure (k), natural frequency increases. Also in this table, in the case of N=1
analytical results (row 1) compared to the software results (row 2) and showing high accuracy of results. It is
clear from the numbers of table that changing in loading profile in n=1, has no effect on the natural frequency.
Tables 5 and 6 show the natural frequencies under maximum pressure of 50 kPa with inner surface of alumina
and outer surface of stainless steel. As it is known, by increasing the ratio of thickness to radius in both linear
and non-linear loading, the natural frequency increases and by increasing the ratio of length to radius in both
linear and non- linear loading, natural frequency decreases. In the case of linear internal pressure, by increasing
the p, the base natural frequency decreases and increases in non- linear mode. The main reason for this case is
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that by in linear mode, by increasing p, non-uniform pressure distances with the uniform pressure, but in the
case of non-linear pressure, with increasing of K it is approaching to the uniform pressure.

Table 4: Comparison of natural frequencies of membrane (Hz) under
Pmax=100kPa (L/R=5, h/R=0.005,m=1, inner surface of nickel and outer surface of zirconium)

Linear internal pressure Non-linear internal pressure

p=0,k=1 !u=0.5,k:1! p=1k=1 !u=1.5,k=1! p=2,k=1 p=1k=2 ‘ p=1k=3 ‘ p=1k=6 ‘ p=1k=10
|1} 16049720 | 16049720 | 16049720 | 16049720 | 16049720 | 16049720 | 16049720 | 160.49720 | 160.49720 |
| 2| 66802301 | 66471948 | 66139941 | 65806257 | 65470869 | 66428652 | 66.572537 | 6672822 | 6677693 |
N=0.5 | 3 | 41.213895 | 39.554763 | 37.622913 | 36.007853 | 34.096298 | 39.332759 | 40066348 | 40847 | 4108857 |
| 4| 42026872 | 38762572 | 35.196807 | 31226474 | 26.671507 | 38.315415 | 39783145 | 4131504 | 4178468 |

5 ! 52.634305 ! 48.360940 ! 43.671389 | 38.413526 | 32.311097 | 47.774215 | 49.698774 ! 5170496 ! 52.31778
1571492 | 157.11492 | 15711492 | 157.11492 | 15711492 | 157.11492 | 15711492 | 157.11492 | 1571492 |
M0 s | as71s | ts7as | ts715 | 15715 | 15715 | 1s715 | 15715 | 15715 |
, | 65.358646 | 65.045703 | 64.731244 | 64.415048 | 64.007690 | 65.004693 | 65.140986 | 6528847 | 6533461
" 65457 | 65152 | 64847 | 64530 | 6423 | 65117 | 65252 | 65396 1 ! 6544 _|
N=1 | 5 40127341 | 38548502 | 36.902167 | 35178861 | 33366659 | 38.337358 | 39035168 | 3977808 | 4000803 |
" 40337 | 38772 : 37138 . 35424 . 33618 | 38563 | 39258 . 39998 . 40225 |
, 40703410 | 37.580698 | 34.173812 | 30.387321 | 26.056254 | 37.153200 | 38556653 | 4002305 | 4047161 |
| 140928 | 37807 ! 34359 | 30468 | 2594 | 37321 | 38746 | 40246 | 40701 |
5 |-D0:931660 | 46839792 | 42.354427 | 37.334007 | 31523026 | 46.278297 | 48120393 | 5004148 | 5062846

¢ 5111 46937 i 4240 36483 295 46 065 48037 50165 50802
| 1| 15148968 | 15148968 | 15148968 | 15148968 | 15148968 | 15148968 | 15148968 | 15148968 | 15148968 |
2| 62961971 | 62.678614 | 62393968 | 62.108016 | 61820738 | 62641487 | 62764880 | 6289842 | 6294021 |
N=5 | 3| 38317020 | 36875772 | 35375838 | 33.809418 | 32.166801 | 36683229 | 37.319751 | 3799798 | 3820803 |
4} 38466785 | 35586704 | 32.452008 | 28.980192 | 25.031373 | 35.192892 | 36486202 | 37.8388L | 3825281 |

| 48.027346 | 44.244572 | 40.106580 | 35.489333 | 30.173616 | 43.726025 | 45427732 | 47.20387 | 47.74683
|1} 14977581 | 149.77581 | 14977581 | 149.77581 | 149.77581 | 149.77581 | 14977581 | 14977581 | 149.77581
N=20 | 262235967 | 61961824 | 61686460 | 61409860 | 61132004 | 61925006 | 620452821 | 627448 | 6221491 |
3} 37.789268 | 36392076 ; 34.939048 | 33492904 | 31834624 | 36205491 | 36822381 | 3747989 | 3768357 |
| 4| 37.854371 | 35056745 | 32.015570 | 28.653404 | 24.840243 | 34674447 | 35930173 | 37.04413 | 3764642 |

5 | 47.279968 | 43.607056 | 39.594882 | 35.127389 | 30.001858 | 43.103921 | 44.755385 | 46.48005 | 47.00746

Figures 5 and 6 show the decrease in natural frequencies when the loading is linear and p coefficient increases
from 0 to 10. In this case, the ratio of length to radius of shell equals to 5 and the ratio of thickness to radius
equals to 0.005. The greatest reduction occurs in the smallest natural frequency (m=1) and highest number of
circumferential wave (n). In figure 5 the power-law exponent equals to 1 and in figure 6 the power-law
exponent equals to 20. By comparing these figures, we find that the Percent reduction in natural frequency have
inversely relation with N.
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Table 5: Comparison of natural frequencies of membrane (Hz) under
Pmax=kPa (L/R=5, N=5,m=1, inner surface of alumina and outer surface of stainless steel)50

Linear internal pressure Non-linear internal pressure
h/R p=0 k=1 p=0.5,k=1 p=1k=1 p=1.5k=1 p=2,k=1 p=1k=2 p=1,k=6 p=1k=10
Present 5219345 4894587 454669 4169871 36400051 4850538 5148165 51950699
Abaqus 0.003 52394 49154 45662 41855 35435 48688 51686 52157
Present 52904160 | 51007418 490373 4698477 44838312 5075429 5248398 52760589
Abaqus 0.005 53339 51462 49498 47448 453 51201 52926 532
Present 5893072 | 57723788 564910 5523085 | 53941190 | 5756418 5866171 | 58838701
Abaqus 0.007 59759 58564 57343 56092 54811 58405 59495 59669
Present 66099568 | 65719619 653374 6495305 | 64656355 | 6566980 6601439 | 66070401
Abaqus 001 671 66727 66352 65975 65959 6668 67019 67074
Present 11263826 | 11256408 112489 1124155 11234124 112554 1126216 11263265
Abaqus 003 11533 11526 11519 11512 11505 11525 11539 11533
Present 12694236 | 12692938 126916 12690344 | 12689046 | 1269276 1269394 | 12694136
Abaqus 005 13272 13271 1327 13268 13267 13271 13272 13272

Table 6- Comparison of natural base frequencies of membrane (Hz) under

Pmax=50kPa (h/R=0.005, N=5,m=1, inner surface of alumina and outer surface of stainless steel)

Linear internal pressure Non-linear internal pressure
L/R | p=0,k=1 | p=05k=1 | p=1k=1 | p=15k=1 u=2k=1 u=1k=2 | p=1k=6 | p=1,k=10
Present 20586518 | 20092653 | 19516256 | 18922309 183091 20018266 | 2048586 | 2055209
Abaqus ! 21242 207,59 20197 19616 19016 20693 21161 21222
Present 52193455 | 48945879 | 45466922 | 41698711 3640005 48505387 | 5148165 | 51950699
Abaqus ° 52394 49,154 45662 41855 35435 48688 51686 52157
Present 40085350 | 37940988 | 35667934 | 30737227 2481942 37651717 | 3961368 | 39924389
Abaqus ! 40169 38028 35607 30364 23864 37731 397 40011
Present 31112407 | 28291410 | 2515602 | 21569585 1725302 27901665 | 3050133 | 30904422
Abaqus 10 31148 28311 25108 21374 14305 27855 30524 30939
Present 23633459 | 22423960 | 21145388 | 18163880 1273717 22261035 | 2336717 | 23542571
Abaqus 3 2364 22437 21,156 17354 10539 22268 23375 2355
Present 20465555 | 19054526 | 17530284 | 15860220 114009 18862320 | 20157139 | 20360421
Abaqus o 20468 19061 17526 15759 12615 183855 20159 20364
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In figure 7 and 8 power function of internal pressure changes between 2 and 10 when p equals to 1. In this case
the ratio of length to radius equals to 5 and the ratio of thickness to radius equals to 0.005. The greatest
reduction occurs in the smallest natural frequency (m=1) and the highest number of circumferential wave
number (n). By increasing n, the distance between the charts increases for m numbers greater than 1. Also the
reduction percentage in lower numbers of pressure function coefficient (k) is more. Figure 7 shows the
reduction of the natural frequency by a volume factor of 1 and figure 8 shows the reduction of natural frequency
by a volume factor of 20. By comparing these figures we can see that with increasing N, reduction percent of
natural frequency decreases.

Conclusion

In this study free vibration of cylindrical shells with simply supported boundary conditions under linear and
non-linear internal pressure was studied. To derive the equations of motion, the Sanders’s thin shells theory and
Rayleigh-Ritz method used and the effect of various parameters such as internal pressure profile, the ratio of
thickness to radius, the ratio of length to radius and material on natural frequencies was investigated. In all cases
the natural frequency dropped at first stage and after reaching the fundamental frequency rises again.
Circumferential wave number (n) which is the fundamental frequency occurs at that number, varied by changing
the load profile and by more closing of load profile to the uniform pressure, the base frequency happens in lower
circumferential number. With increasing the pressure load coefficient (i) the natural frequency decreases and
increases when power of pressure function (k) increases. In the case of linear internal pressure, by increasing the
u the fundamental natural frequency decreases and increases in non-linear mode. By increasing the p coefficient
and decreasing k power, the greatest reduction occurs in the smallest natural frequency (m=1) and highest
number of circumferential wave (n). With increasing N, reduction percent of natural frequency decreases in
nonlinear and linear pressure load.
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