

Assessment of Water Bodies using Eco-exergy based Ecological health index Methodology

Saurabh Mishra^{1*}, M.P. Sharma² and Amit Kumar³

^{*1, 2, 3} Biomass and Ecosystem Lab, Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India

Received 12 Nov 2014, Revised 10 May 2015, Accepted 10 May 2015 *Corresponding author: saurabhmishra20057@gmail.com, Mbl. No +91-7417575326

Abstract

Human-affected freshwater ecosystems are becoming stressed and dysfunctional at regional and global level. Ecosystem health integrates the factors like ecological, economic, social and human health. The services provided by these ecosystems are extremely important to human welfare and therefore, it is essential to assess the ecological health of water bodies. The paper reviews the indices and indicators used by researchers for assessing the ecological health. Out of the large number of indices, few indices developed like IMEERA, HEHI, etc. are reported to provide precise results, but are time consuming and needs lengthy proceed. In the present paper, the ecological health index methodology (EHIM) along with/without tropical state index (TSI), being less time consuming and provide precise results, has been applied as a tool to assess the ecological health of Baiyangdian Lake (China) and found to have results similar to that obtained by Xu et al. [25] using eco-exergy based index (EBI) with TSI. The results indicated that the ecological health of Baiyangdian Lake is of middle health category i.e. (EHIM, 40-60), indicating bad quality of water with no life supporting ability. EHIM, therefore, as an important tool based on eco-exergy to assess the ecological health of water body in any geographical region and can recommended for ecological health assessment of water ecosystems.

Key words: Ecological Health, Water Body, Indicators, Indices, EHIM.

Nomenclature

BOD: Biological Oxygen Demand.	SDM: Structural Dynamic Model.				
DO: Dissolve Oxygen.	IBMA: Antillean Macro Invertebrate Biotic Index;				
TDS: Total dissolved solid	ISI: Invertebrate Species Index.				
COD: Chemical Oxygen Demand.	BMAI: Benthic Macro Invertebrate Assemblages Indices.				
Chl-a: Chlorophyll-a.	BMI: Biotic Macro-invertebrates Index.				
TN: Total Nitrogen.	LICOI: Limnological Conditions Index.				
TP: Total Phosphate.	EQI: Ecological quality index.				
SD: Secchi Depth.	SSMI: New Multi-metric Salt Marsh Sediment Microbial				
TSI: Tropic State Index.	Index.				
WQI: Water Quality Index.	PMMI: Predictive Multi-metric index.				
BHI: Bay health index.	EFAI: Estuarine Fish Assessment Index.				
HEHI: Holistic Ecosystem Health Index.	EPI: Eco Path Model.				
IMEERA: Indice Multimetricodel Estado Ecologicopara	HEHI: Holistic Ecosystem Health Index.				
Rios Altoandinos.	EBLE: Environmental Quality, Biology and Ecology,				
EHIM: Ecosystem Health Index Methodology.	Landscape Pattern and Ecosystem Management Index.				
EBI: Eco-exergy Based Index.	FMM: Fuzzy Mathematical Models.				
P-IBI: Planktonic Index of Biotic Integrity.	GSM: Gray System model.				
	IHRs: Integrated Health Responses.				

1. Introduction

Water is essential for the existence of life on earth. With increase in population, the quantity and quality of water is increasingly being used in domestic, agricultural, industrial, recreational, and other commercial activities. Of the total water availability, globally about 97.5% of total available water is saline while the balance 2.5% is freshwater, most of which is available as deep and frozen in Antarctica as well as in Greenland, while only 0.26% is available in rivers, lakes, soils, shallow aquifers, etc. for use by human [1-2]. The water bodies are complete ecosystem in themselves and perform important functions of satisfying a number of human demands by acting as a source for resources and sink for the waste. These water bodies are self-sustaining and self-regulating in the sense that up to certain pollutant addition, these have good regenerative capacity and can undergo self-purification and other ecological processes to maintain their health. In recent times, due to rapid industrialization and urbanization, the pressure on the water bodies has reached to a level, where their revival becomes difficult due to the significant reduction in their carrying capacity. The assessment of ecological health and carrying capacity of such water bodies is, therefore, becoming important, not only for developing countries but also for developed ones. Therefore, there is an urgent need to develop systematic diagnostic tools to assess the health of water bodies, so that the corrective measures can be taken in time to restore the health and carrying capacity of given aquatic ecosystem [3].

The present paper covers the concept of ecosystem health and reviews the methodologies adopted by researchers and finally selecting appropriate assessment system applicable to a given water body. Beside this, the literature reviewed for the analysis of work done in field of ecological health assessment of water bodies in India. Furthermore, the selected assessment methodology is applied to assess the ecological health of Baiyangdian Lake (China), based on the parameters data obtained from literature comparison of result shows that the selected assessment methodology can be recommended as a tool to assess ecological health of water bodies in India and abroad.

2. Concept of Ecological Health of Water Body

As per literature, ecological health is a scientific tool to classify ecosystems with respect to human cause. The term "ecological health" was coined early in 19th century due to its benefits in terms of services, functions, its components, and indicators [4]. The ecological health can also be defined on basis of water uses, water quality, biota, watershed, anthropogenic disturbances etc., and therefore, different types of indices are used to quantitatively assess the ecological health of water bodies [5-6]. An ecological health of ecosystem is considered as `stable and sustainable', meaning, thereby, that all food chains in the system are balanced with no shortage/accumulation of production/wastes.

3. Indices used to assess the Ecological Health

In complex ecosystem, the ecological indicators play an important role to understand the functioning of the system. Large numbers of indicators are developed to assess various aspects of the ecosystem but it is difficult to select suitable indicators to simplify the complexity [7]. The indicators like physiochemical (DO, BOD, SD etc.) and biological parameters (planktons, benthos, fishes etc.) etc. can be used to assess the health of water bodies. These indicators are helpful in understanding the changes in water quality and trends in aquatic life. Based on the literature, the different types of indices used for ecological health assessment of rivers, lakes, and wetland are reviewed and presented in Table 1.

Mishra et al.

J. Mater. Environ. Sci. 6 (9) (2015) 2631-2646 ISSN: 2028-2508 CODEN: JMESCN

Sl.	Name of	Indicators	Range of indices	Limitations	Index formula/methodology	Scope	Ref. No.
No.	Indices					•	
1.	The Planktonic Index of Biotic Integrity (P- IBI) methodology.	 Phytoplankton biomass, Zooplankton biomass, 	TP, Clh-a metrices range 1-5: • Eutrophic (1-3) • Mesotrophic (1-5) • oligotrophic lakes (>5)	Availability of historical datasets and sampling frequency should be important considerations.	• $P - IBI = \frac{1}{B} \sum_{k=1}^{B} \frac{1}{S} \sum_{j=1}^{S} \frac{1}{M} (EA_{jk} + CBjk+RJjk+LMjk+RAjk+ZBjk$ Where, EA _{jk} is the 1 st month biomass of edible algae taxa metric score; CB _{jk} is the1 st month% indicator phytoplankton of total phytoplankton biomass metric score; RJ _{jk} is the 1 st month zooplankton ratio metric score; LM _{jk} is the 2 nd month indicator zooplankton density metric score; RA _{jk} is the 3 rd month zooplankton ratio metric score; ZB _{jk} is the 3 rd month crustacean zooplankton biomass metric score; M is the number of metrics; S is the number of sites (within a basin); and B is the number of basins.	 To assess offshore water quality of lakes Used to monitor changes in lakes due to anthropogeni c stressors. 	[8]
2.	Eco-exergy Based indices (EBI)	 Phytoplankton biomass, Zooplankton biomass, Submerged plants. 	NA	NA	• $Ex = \sum_{i=1}^{n} \beta_i C_i$ • $Ex_{st} = \sum_{i=1}^{n} {C_i / C_t}$ Where, Ex is the Eco-exergy; Ex_{st} is the Structural eco-exergy; β_i is the weighting factor of the i th component; C_i is the biomass of the i th component or the concentration of the i th component or the thetotal number of components selected.; and C_t is the total biomass, which is the sum of all the C_i	Can be applied to any water bodies to assess its health.	[9]
3.	The Structural Dynamic	Phytoplankton biomass,		• The number of selected parameters	Application of eco- exergy and structural eco-exergy is used for model calibration.	• The model may be	[10]

Table 1: Indices for Ecological Health Assessment for Water Bodies

	Model (SDM)	 Zooplankton 		for optimizing eco-		suitable for	
		biomass,		exergy is normally		assessing the	
		 Submerged plants. 	NA	restricted due to		ecological	
				technical limitations		health of	
				• Allometric principles		different	
				for phytoplankton and		water bodies.	
				restricted to the sizes		• Can be	
				of the two species		applied in eco	
						toxicology	
						assessment.	
4.	Ecosystem	• Biomass	Range 0-100:		• EHI = $\sum_{i=1}^{n} w_i \times \text{SUBEHI}_i$	Can be used to	[11]
	Health Index	concentration and	• Worst (0–20).		Where, EHI is the synthetic ecosystem	assess	
	Methodology	dry weight of	• Bad (20–40).		health index; SUBEHI _i is the i th sub-	ecosystem	
	(EHIM).	phyto&	• Middle (40–60).		ecosystem health index for the i th	health	
		zooplankton.	• Good (60–80).	NA	indicator; n is the number of indicators	quantitatively	
		• The number of	• Best (80–100).		considered in assessment; and w _i is the	and compare	
		cells of			weighting factor for the i th indicator.	the states for	
		phytoplankton, etc.				single and	
						different lakes,	
						and also can be	
						applied on other	
					r	water bodies.	
5.	Ecological	• Water temperature	Range0-50:		• EQI = [status no. for EQI of CTSI +	Can be	[12]
	quality index	· ·	• Poor health (1).		status no. for EQI of WQI+1SDI/3	applied to any	
	(EQI).	• Turbidity	• Excellent health		Where, CTSI is the Carlson tropic state	water bodies	
		• TSS, pH, DO, TN,	(50).	NA	index; WQI is the water quality index;	to assess its	
		TP, BOD			and SDI is the Simpson diversity index.	health	
		• Riparian					
<u> </u>		vegetation.					
6.	Bay Health	• Chl-a	The score ranges for		• $BHI = avg. of(WQI + BI)$	Can be	[13]
	Index (BHI).	• DO	each BHI component		Where, WQI is the water quality; and BI	applied to	
		• SD	0-100%.		is the biotic indices.	other	

		 Phytoplankton Benthic invertebrates Submerged aquatic vegetation 	Impaired (0%).Unimpaired (100%).		NA		• Both WQI and BI are expressed as the average of the % attainment of their component metrics and biotic indices, are averaged to obtain the BHI.	watersheds also to assess health.	
7.	Limnological conditions index (LICOI).	 Temperature, DO, pH, conductivity, hardness, Cl, NH₃, NO₃, NO₂ and BOD. Phytoplankton Periphyton Macro invertebrates, macrophytes 	 Range 0-100%. Slightly contaminated (> 35%). Moderately polluted (17.5-35%). Heavily contaminated (4-17.5%). Severely contaminated(< 4%). 		NA		• LICOI = [(100 - (%BIP 0.3)) + 100-%BID 0.3+100-%BII 0.1+100-%BIM 0.3 Where, % BIP is the biotic index of phytoplankton; % BID is the biotic index of periphytic diatoms; % BII is the biotic index of aquatic macro-invertebrates; and % BIM is the biotic index of aquatic macrophytes.	Can be used to assess the ecological health of wetlands and can be extended to other aquatic environments.	[14]
8.	Environmental quality, biology and ecology, landscape pattern and ecosystem management index (EBLE).	 Environmental quality Sediment quality Habitat quality Chl- a Phyto& Zooplankton Fish Benthos Landscape pattern Ecosystem management 	Range 0-1: • Bad (0–0.2). • Poor (0.2–0.4). • Moderate (0.4–0.6). • Good (0.6–0.8). • Excellent (0.8–1.0).		NA		• IEBLE = $(IEQ \times W_{EQ}) + (IBE \times W_{BE}) + (ILP \times W_{LP}) + (IEM \times W_{EM})$ Where, IEBLE is the comprehensive ecological integrity index in the estuary region; IEQ is the ecological integrity indexes environmental quality; IBE is the ecological integrity indexes biology ecology; ILP is the ecological integrity indexes, landscape pattern; IEM is the ecological integrity indexes of, ecosystem management; and W _{EQ} , W _{BE} , W _{LP} and W _{EM} are their weights, respectively.	It is comprehensiv e ecological integrity index and considers the multi-scale eco- environmental characteristics, and is very useful and can be applied to other estuary wetland heath assessment.	[15]
9.	Benthic macro	• Benthic macro	M-AMBI Range 0-1:	Azti	Marine	Biotic	• BMAI is comparative analysis of	Can be	[16-17]

	invertebrate	invertebrates	• High quality (>0.77).	index (AMBI),	AMBI, M-AMBI BENTIX indices, and	applied to any	
	assemblages		• Good (0.53-0.77).	multivariate-AMBI (M-	BAT index	water bodies	
	indices		• Moderate (0.38-	AMBI), and Bentix	• AMBI = $ (0 \times \% GI) + (1.5 \times$	to assess its	
	(BMAI)		0.53).	index are indices based	%GII+3×%GIII+4.5×%GIV+6×%G	health	
			• Poor (0.20-0.38).	on ecological groups,	V/100		
			• Bad (<0.20).	which are ranked	\bullet BENTIX =		
			Bentix range 0-6:	according to their	$(6 \times \% \text{GS} + 2 \times \% \text{GT})/_{100}$ Where, GI		
			• Normal/Pristine (4.5	sensitivity to an	/100 Where, 61		
			\leq BENTIX < 6.0).	increasing stress	is the species very sensitive to organic		
			• Slightly polluted,	gradient. Groups	enrichment; GII is the species in		
			transitional $(3.5 \leq$	considered varies with	different to enrichment; GIII is the		
			BENTIX < 4.5).	the index: 5 for AMBI	species tolerant of excessive organic		
			• Moderately polluted	and M-AMBI; 2 for	enrichment; GIV is the 2^{nd} order		
			$(2.5 \leq \text{BENTIX} <$	Bentix.	opportunistic species; GV is the 1 st		
			3.5).		order opportunistic species; %GS is the		
			 Heavily polluted 		relative abundance of sensitive species		
			$(2.0 \leq \text{BENTIX} <$		is the %GI + %GII; %GT is the relative		
			2.5).		abundance of tolerant species is the		
			• Azoic (0).		%GIII + %GIV + %GV; and BAT		
					index is a multimetric methodology		
					that combines Margalef, Shannon		
					Weiner and AMBI indices.		
10.	Biotic macro-	• Benthic macro-	Based on 10-point	Ganga River System	• BI is combination of NEPbios,	Can be used	[18]
	invertebrates	invertebrates	taxa scores in which	biotic score (GRSbios)	BRSbios, GRSbios, HKHbios, and	for water	
	index (BMI)		• Highly pollution-	is most reliable,	NEPbios	bodies in	
			tolerant taxa (1).	followed by the	• The Receiver Operating Characteristic	different	
			• Highly pollution-	Nepalese Biotic Score	(ROC) methodology is used to	geographic	
			sensitive taxa (10).	(NEPbios)-Extended,	calculate the accuracy of a biotic index.	regions.	
				Hindu-Kush Himalayan	• A non-parametric Spearman's rank		
				Biotic Score	correlation coefficient method is used.		
				(HKHbios), and			
				Bagmati River System			

Mishra et al.

J. Mater. Environ. Sci. 6 (9) (2015) 2631-2646 ISSN: 2028-2508 CODEN: JMESCN

				biotic score (BRSbios).			
11.	The Antillean Macro invertebrate Biotic Index (IBMA)	• Macro invertebrate	Range 0.05- 0.98: • High–good (0.98-0.73) • Good–moderate (0.73-0.60) • Moderate–poor (0.60-0.48) • Poor–bad (0.48-0.35)	 Metrics for: Taxonomic diversity, Species abundance and some substratum types. Each metric was weighted by its discrimination efficiency. 	• IBMA = $\sum \frac{DE_M \times EQR_M}{SDE_M}$ Where, IBMA is the Antillean Macro invertebrate Biotic Index; DE _M is the discrimination efficiency of the biological metric 'M'; and EQR _M is the Ecological Quality Ratios value of the biological metric 'M'.	This might prove relevant to other Caribbean islands water bodies in biogeography area.	[19]
12.	The invertebrate species index (ISI)	• Benthic macro invertebrates	 Range 1-10: On species scoring: Restricted to undisturbed sites (10) Taxon tolerant to excessive pollution and degradation (1). 	 Small creeks and tributary streams catchment area of <50 km² and an altitude of <675 m. Larger streams and rivers, of catchment area >50 km² and at an altitude of <100 m. 	• ISI = $\frac{\sum_{i=1}^{n} S_{10i} \times W_i \times A_i}{\sum_{i=1}^{n} W_i \times A_i}$ Where, S ₁₀ is the Weighted average of all species scores; W is the indicator weight; and A is the abundance score of each species (i) as weights.	For streams in southeast Queensland, Australia.	[20]
13.	New Multi- metric Salt Marsh Sediment Microbial Index (SSMI)	 Physical–chemical and Microbial parameters 	Range 0-1: • Very low (<0.44). • Very high (>1.76). • Medium (0.89–1.32).	A Principal Component Analysis (PCA) was performed to select the appropriate measured parameters to integrate the index.	• SSMI = $\sum_{a=1}^{n} W_i S_i$ • S = $\frac{\sum_{a=1}^{n} W_i S_i}{1(1+(X/X_0)^b)}$ Where, W is the Principal component analysis weighing factor of the PCA selected variable; S is the respective score; x is variable verified value; a is the maximum score of the variable (in this case 1); x ₀ is the average value of the variable; and b is the value of the slope of the equation.	• This index is valid for describing the salt marsh degree of maturity, halophytic species colonizing the sediment in marine ecosystem.	[21]

						• Can be used for marine ecosystem health assessment.	
14.	Índice Multimétrico del EstadoEcológi copara Ríos Altoandinos (IMEERA) index.	 Physiochemical parameters. Hydro morphological Aquatic macro invertebrate assemblages. 	Range 0–100: • Poor quality (0). • Good quality (100).	 The threshold between: Good and moderate was established using the 25th percentile. Very good and good was set using the 75th percentile of reference sites 	 Index value = (score 1+score 2& score n) N Where, Score 1, 2 n is the value obtained for each metric in the score from 0 to 100; N is the number of calculated metrics; 	 Two versions of IMEERA: For lower altitude bioregion streams (IMEERA-B index). Higher elevation bioregion streams (IMEERA-P river type). 	[22]
15.	Predictive multi-metric index (PMMI).	• Fish functional traits	NA	NA	Matrices of richness, abundance and biomass are calculated along with Indice Poisson Rivière (IPR) etc.	Can be applied on any water bodies to assess health.	[23]
16.	The Estuarine Fish Assessment Index (EFAI)	Fish-based • Species richness • Migrants species • Estuarine species • Piscivorous species • Diadromous species	 Range 5-18: Oligohaline (salinity <5). mesohaline (5<salinity>18).</salinity> polyhaline (salinity>18). 	NA	 EFAI include metrics revealing fish community structure and function as well as using key-species to evaluate specific impacts of anthropogenic activities. The EFAI is expressed as the sum of all metrics scores. 	Can be used for water bodies in hyaline zones or marine ecosystem.	[24]

		Introduced species,Disturbance sensitive species					
17.	Eco path model (EPM)	• Key food web (Fish, shrimp, crabs, and shellfish).	 Range 0-1: Data not rooted in local (0). Data fully rooted in local data (1). 	 In this model, value of EE (Eco trophic efficiency) should be between 0-1. The respiration of each functional group is positive. 	• $B_i (P/B)_i EE_i =$ $Y_i + \sum B_j (Q/B)_j DC_{ij} + EX_i Where, B_i$ is the biomass of function group i; $(P/B)_i$ is the production /biomass rate; EE_i is Eco trophic efficiency; Y_i is the yield of group i; B_j is biomass of the predator group j; $(Q/B)_j$ is the relative food consumption ratio of j; and DC_{ij} is the fraction of prey i in the diet of predator j	 The maturity of the target and existing ecosystems is evaluated. Can be applied to any water bodies to assess its health. 	[25]
18.	Fuzzy mathematical models (FMM).	 Hydrological characteristics Water environment quality Structure and function of aquatic ecosystems Structure of waterfront areas Scenic effects Stress factors 	 Primary productivity of plankton plants, 2.5–7.5 g/ (m²/d) as the critical state. Width of the buffer zone of vegetation for healthy (10 m) and for unhealthy (5m). 	 It is required to choose indicators and standard values according to the various objectives varying from site to site. Avg. Depth of lake (1-2 m) Minimum velocity 0.02 m/s 	• $A = W \times R$ • $R = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \\ R_{41} & R_{42} & R_{43} \\ R_{51} & R_{52} & R_{53} \\ R_{61} & R_{62} & R_{63} \end{pmatrix}$ (T1i)	Can be applied to any water bodies to assess its health	[26]
19.	Gray system	 Hydrology 			It include assessment of indicators by	To assess the	[27]

	model (GSM)	Water environmentPhysical habitat,Biotic structure	NA	NA	 evaluating their: Reference sequence Comparison sequence Gray incidence coefficient Degree of gray incidence 	river ecosystem function	
20.	Holistic ecosystem health index (HEHI) methodology	 Ecological- Water quality, Watershed health, Land use and farming productivity, and Biodiversity Social-Faming Income, Affluence Interactive- Catchment protection, Environmental awareness 	The scale 0-100 • Healthy (100). • Unhealthy (0).	NA	Mean and standard deviations of the health scores of the indicators for each dimension per decade are computed in for the overall HEHI index.	Can be applied to any water bodies to assess its health.	[28]
21.	Integrated Health Responses (IHRs) modeling	 Water chemistry analysis, Habitat health, Eco toxicity tests, Molecular/bioche mical, physiological biomarkers, 	The IHRs model values • Highest correlations response to individual- population level ($r =$ 0.91, $p < 0.01$) • Strongly relate to the parameters for other levels ($r >$ 0.80, $p < 0.05$), r:correlation coefficient. p: parameter.	NA	All data were standardized to allow direct visual comparison of all responses at each sampling site and compared with the reference site.	Can be used for ecological health assessment and to identify biomarkers or bio indicator physiochemic al and biological parameters for monitoring urban streams.	[29-30]

The Table 1 shows that the ecological health assessment based on biotic indicators like planktons, benthos, and physiochemical parameters is the need in today's world due to the rapid degradation of water bodies. Based on literature, the common parameters required for the evaluation of different indices and their advantage/disadvantage are given in Table 2.

Sl. No.	Indices	Parameters required for evaluation	Advantage (+)/Disadvantage (-)
1.	EBI, P-IBI,	Planktons (phyto & zoo)	• Based on thermodynamic indicator (+).
	SDM, EHIM.		• EHIM can define holistic ecological health status of water body (+).
			• P-IBI, and SDM based evaluation is time consuming (-).
			• EBI may not be used to define holistic ecological health status of
			water body (-).
2.	IBMA, ISI,	Benthic invertebrates	• It is based on only one type of indicator (+).
	BMI, BMAI.		• Physiochemical and other social aspects are not considered (-).
			• Restricted to geographical region (-).
3.	IMEERA, BHI,	Planktons, benthos, and	• Both physiochemical and biotic indicators are considered (+).
	LICOI.	physiochemical parameters	• Evaluation is very time consuming and requires good mathematical
			approach (-).
4.	EQI.	Physiochemical parameters	• Evaluation less time consuming (+).
		and riparian vegetation [31-	• Do not consider the aquatic biota (-)
		33]	
5.	SSMI.	Physiochemical Parameters	• Principle component analysis requires good skill in statistics (-).
		and benthic invertebrates	• Restricted to marine ecosystem (-).
6.	PMMI, EFAI,	Fish traits	• It is based only on one type of indicator (+).
	EPI.		• It is restricted to only fish assemblage data and other aspects have not
			been considered of ecosystem (-).
7.	HEHI, EBLE,	Physiochemical, biological,	• Result obtained is very precise (+).
	FMM, GSM.	hydrological, and social	• Evaluation is very time consuming and requires good mathematical
		parameters	approach (-).
8.	IHRs.	Biochemical markers	• Considers metabolites as indicator,
			• Could give precise result (+).
			• Lengthy evaluation makes it a time consuming (-).

Table 2: Parameters for Evaluation Indices and their	Advantage/Disadvantage
--	------------------------

The literature review reveals that the little work has been done on assessment of ecological health of water bodies in India [12, 17 & 18], but significant work in other countries as shown in Table 1. Out of several indices, only EHIM is found as a useful tool to evaluate the health of any water body; as it is less time consuming, require thermodynamic parameter (eco-exergy) and provide satisfactory results to assess ecological health of the water body quantitatively as well as qualitatively; accordingly only EHIM is discussed below:

4. Ecosystem Health Index Methodology (EHIM)

The EHIM was initially proposed by Xu et al. [11] and applied to assess the ecological health of 30 Italian lakes. The EHIM can be used to assess the lake health ecosystem of any geographical region. The step by step procedure to evaluate EHI is performed, which consists of selecting the basic and additional indicators to determine the correlation; calculating SUBEHIs for all selected indicators; determining weighting factors for all selected indicators; assessing

ecosystem health based on EHI values. The EHI ranges from 0-100, where 0 indicate less polluted and 100 indicates severely polluted river shown in Table 3.

Sl.No.	EBI	EHI	TSI	Attributes of water body
1	Poor	Worst	Very High	Hypereutrophic: algal biomass relatively very high, highly nutritive, significantly reduced
	(6.0-6.2)	(0-20)	(80-100)	oxygen levels and prevent life functions at lower depths, zooplankton (only
				Microzooplankton) biomass very less, Ex high, Exst and buffer capacity low.
2	Moderate	Bad	High	Eutrophic: high biological productivity, able to support abundance of aquatic plants,
	(6.2-6.8)	(20-40)	(60-80)	devoid of oxygen, zooplankton biomass less (Macrozooplankton biomass relatively very
				less, Microzooplankton biomass high), moderately life supporting activity.
3		Middle	Moderate	Mesotrophic: algal biomass relatively low, zooplankton biomass high (Macrozooplankton
		(40-60)	(40-60)	biomass less, Microzooplankton biomass very high). Ex, and Exst high but low buffer
				capacity, little life support of aquatic flora and fauna.
4	Good	Good	Low	Oligotrophic (Hypolimnia become anoxic): algal biomass relatively low,
	(>6.8)	(60-80)	(20-40)	low algal production, and very clear water, with high drinking-water quality, zooplankton
				biomass very high (Macrozooplankton biomass high, Microzooplankton biomass less),
				ample oxygen with moderate life support ability.
5		Best	Very Low	Oligotrophic (Hypolimnia remain oxygenated throughout the year): Algal biomass very
		(80-	(0-20)	low, zooplankton biomass very high, (macrozooplankton biomass relatively very high,
		100)		microzooplankton biomass very less). Ex, Exst and buffer capacity relatively high, more
				oxygen, high life supporting ability to sustain aquatic flora and fauna.

Table 3: Comparison of EBI	, EHI and TSI to Classify I	Ecological Health of Water Body

The above Table 3 shows that more TSI is than EBI and EHI is an indication of worst quality of water and vice versa and provides important information about the ecological health of a water body. These indices are also used to assess quality of water suitable for drinking, recreation, irrigation, and aquatic life. The water bodies with slight increase in phytoplankton density as indicated by chlorophyll 'a' i.e. more Chl-a indicates more phytoplankton biomass showing of worst ecological health.

The SUBEHI and EHI indices were calculated by following equation:

 $SUBEHI = 10(a + b \ln C_x).$ (Equation 1)

Where, C_x is the measured indicator value; 'a' and 'b' is constants evaluated using C_{min} and C_{max} by equation 2 and 3 as:

$a = -10 \times \frac{\ln C_x}{\ln C_{\max} - \ln C_{\min}}$	(Equation 2)
$b = 10 \times \frac{1}{\ln C_{\max} - \ln C_{\min}}$	(Equation 3)

Where, C_{max} is the measured maximum value when sub EHI is 0; C_{min} is the measured value when the measured SUB EHI is 100.

$$w_i = \frac{r_{i1}^2}{\sum_{i=1}^m r_{i1}^2}$$
....(Equation 4)

 w_i is the weightage factor for i^{th} indicator; r_{i1} is the Pearson correlation coefficient between the i^{th} indicators and basic indicator; m is the total number of indicator considered.

 $EHI = \sum_{i=1}^{n} w_i \times SUBEHI_i.$ (Equation 5)

Where; SUBEHI is the ecological health index of i^{th} indicator; i^{th} indicators are phytoplankton biomass (BA), zooplankton biomass (BZ), eco-exergy (Ex) and structural eco-exergy (Ex_{st}).

5. Ecological Health Assessment of Baiyangdian Lake Case Study

The Baiyangdian Lake, one of the biggest lakes in the North China, is located in the range of $115^{\circ}45'-116^{\circ}07'E$ and $38^{\circ}43'-39^{\circ}02'N$, with an area of 366 km^2 . It consists of 143 small and shallow lakes linked by thousands of ditches. Generally, the lake is regarded to be partly dry at water level of 6.5m, and is totally dry at water level 5.5m. In the past 50 years, the water depth varied between 5.2 - 9.26 m [34].

From literature review, it is observed that the ecological health of Baiyangdian Lake was assessed using eco-exergy based index (EBI) by Xu et al. [9] but in the present study, the concept of EHIM has been applied to assess the ecological health of the said Baiyangdian Lake. The data on phytoplankton biomass (BA), zooplankton biomass (BZ), tropic state index (TSI), eco-exergy (Ex), and structural eco-exergy (Ex_{st}) as indicators were obtained from the work of Xu et al. [9]. The details of sampling locations in lake are also given in the paper of Xu et al. [9]. The calculated SUBEHI index of each indicator and overall EHI at 14 different sites of the lake is given in Table 6. For calculation of EHI, the value of 'a' and 'b' constant were evaluated using equation 2 and 3 respectively, and the weightage factor of each indicator was calculated using equation 4 and is given in Table 4. The Pearson Correlation coefficient (r) between different indicators is given in Table 5.

Indicators	BA	BZ	BA/BZ	Ex	Ex _{st}
Wi	0.78	0.04	0.01	0.00	0.16
А	-8.20	8.50	20.21	-93.24	-107.75
В	3.84	3.62	3.30	12.17	59.86

 Table 4: 'a' and 'b' constants and weightage factor (w_i) value of indicators

Table 5: Pearson Correlation coeff	icient between BA and other indicators
------------------------------------	--

Correlation	BA-BA	BA-BZ	BA-BA/BZ	BA-Ex	BA-Ex _{st}
r _{ij}	1	0.23	-0.11	0.07	-0.45
$\mathbf{r_{ij}}^2$	1	0.05	0.01	0.01	0.20

Table 6: Ecological health status of Baiyangdian Lake, China using EHI methodology

Sampling	SUBEHI	SUBEHI	SUBEHI	SUBEHI	SUBEHI	EHI	Health status
sites	(BA)	(BZ)	(BZ/BA)	(Ex)	(Ex _{st})		range
1	65.07	50.35	43.96	78.47	16.60	56.98	Middle
2	60.60	81.78	76.44	11.64	28.98	56.37	Middle
3	70.92	69.13	56.02	36.13	27.09	63.55	Good
4	00.00	11.70	64.73	99.99	99.99	17.49	Worst
5	68.11	99.96	79.03	67.51	00.01	58.67	Middle
6	14.70	14.08	54.23	40.95	12.74	14.84	Worst
7	8.17	00.17	47.15	00.00	17.56	9.66	Worst
8	34.33	69.63	87.97	72.84	61.10	40.75	Middle
9	26.87	43.87	70.89	76.73	62.88	33.96	Bad
10	36.97	21.70	42.00	42.09	53.91	39.10	Bad
11	27.25	76.14	99.99	35.67	28.98	30.30	Bad
12	99.95	35.10	00.00	73.65	21.39	83.62	Best
13	31.06	43.18	66.68	46.73	69.96	38.18	Bad
14	11.05	73.70	35.74	84.29	86.47	26.29	Bad
Overall avg. EHI of lake					40.69	Middle	

The Pearson correlation coefficient of each indicator is used to evaluate the weightage factor (wi) as per equation 4. SUBEHI for each indicator are multiplied with their weightage factor (wi) and finally averaged to get the EHI at all 14 sites using equation 5. The EHI of all 14 sites of various sampling locations are averaged to get the overall EHI of lake. The graphical representation of ecological health of the lake is shown in Figure 1.

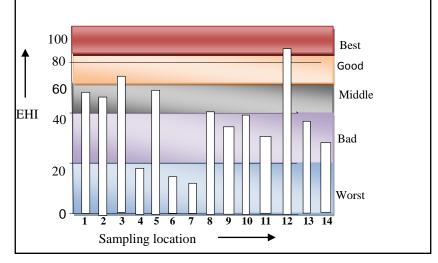


Figure 1: Ecological health of Baiyangdian Lake at all sampling locations

In the Figure 1, the red portion depicts that the value of EHI is high (80-100), hence it can be said that water in these regions are free from polluted i.e. fit for drinking purpose. The EHI for the region which is orange reads from 60-80, reveals that the water quality in these regions is good. The Water Quality Index for the region showed in blue (0-20) confirms that the water in these regions has been contaminated with high pollutant level which is unsuitable for drinking.

6. Result and Discussions

Literature review reveals that assessment of ecological health of any water body requires appropriate indices and indicators. The concept of eco-exergy can be applied to all water bodies to assess its health. The benthic macro-invertebrates are essential indicators as most of indices reviewed require benthos data for ecological health assessment. It is also found that almost all the indices reviewed can be used to assess the ecological health of water body in all geographical regions, except IBMA and ISI due to being region specific, while EFAI and SSMI are restricted to hyaline water bodies only. Table 1 and 2 shows that though the indices like HEHI, EBLE etc. cover all the aspects of ecosystem for assessing the ecological health but involve complicated evaluation. The EHIM is, therefore, selected as an appropriate tool for ecological health assessment of water bodies, and is applied to assess the ecological health of Baiyangdian Lake. EHI of 40.69, is an indication of bad quality of water (EHI: 40-60) with no life support. Table 7 compares the results obtained from EBI used by Xu et al. [9] with the results of EHI obtained in present study.

Features	Xu et al., 2011	Present study			
Methodology	Based on comparative analysis of eco- exergy and structural eco-exergy i.e. EBI.	Based on EHIM			
Findings	• Overall lake health is found as moderate.	• Overall lake health is in middle status, but overall average EHI (40.69) is very close to bad health.			

Table 7: Comparison of Results on Ecological Health of Baiyangdian Lake

The above table shows that the results of EHIM are in good agreement with EBI indicating the bad health of lake and bad quality of water with no life supporting ability. It could be due to various anthropogenic activities in undergoing nearby area. Graphical presentation of EBI, TSI and EHI of Baiyangdian Lake has been shown in Figure 2.

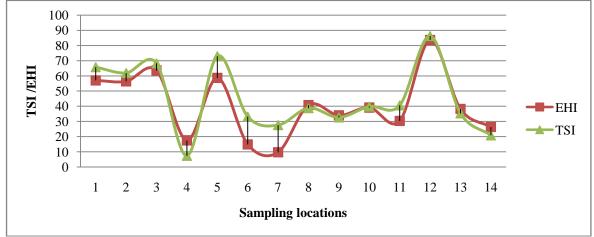


Figure 2: Comparison of Ecological Health Status based on EHI & TSI

Figure 2 shows that, the overall ecological health of Baiyangdian Lake is found as medium showing medium quality and medium health with little life support. Xu et al. [9] evaluated that trend of EBI with tropic state index (TSI) found as reciprocal. To further validate the results of EHI, TSI was calculated for all 14 sampling locations and results are to show a positive trend as suggested by Xu et al. [9] i.e. low EBI, EHI and TSI is higher, is an indication of bad quality, nutritive lake with no life support and vice versa. These results reveal in addition to EBI, EHIM can also be used to know the health of a water body. From the above, it is concluded that both EBI & EHIM and TSI can be used to assess t health of any water bodies and for undertaking appropriate preventive measures to restore the health of water bodies.

Conclusions

The literature reveals that the physiochemical and biotic parameters like plankton, benthos, fishes etc. are the indicators of the health of aquatic ecosystems. Although, the hydrological, geographical and social characteristics are considered for health assessment and also for minimize the impacts of anthropogenic disturbances. Out of several indices reviewed, indices like IBMA & ISI are region specific, while EFAI & SSMI are restricted to hyaline water bodies. The EHIM is found as the only indexes which can be applied in very less time and give precise results for health of water bodies. In the paper, EHIM applied for assessment of health of Baiyangdian Lake China, and results similar to EBI used by Xu et al. [9] are obtained. As per the EHIM, the EHI of Baiyangdian Lake has EHI: 40-60, which indicates bad water quality with no life support capability which may be due to significant anthropogenic activities surrounding the lake. To further validate the results of EHI, TSI was calculated for all 14 sampling locations and results are to show a positive trend as suggested by Xu et al. [9] i.e. low EBI, EHI and TSI is higher, is an indication of bad quality, nutritive lake with no life support and vice versa. The indices like P-IBI, SDM etc. require limited indicators and do not cover all the aspect of ecosystem, while, indices like HEHI, FMM etc. covers almost all aspects of ecosystem health, but are time consuming, and have complex calculation procedure and yields enormous results. The work concluded that EHIM can also be used as an important to assess the ecosystem health in addition to EBI used by Xu et al. [9].

Acknowledgement-One of the authors (SM) is thankful to MHRD, Government of India for financial assistance in the form of academic scholarship during his Master of Technology programme in Environmental Management of Rivers and Lakes.

References

- 1. Fry A., Haden E., Martin M., Martin R., Facts and trends of water. World business council for sustainable development. Report. (2005), *ISBN*. 2-940240-70-1.
- 2. Royo C.L.Y., Casazza G., Martin P.C., Pergent G., *Ecol. Ind.* 10 (2010) 380–389.
- 3. Su M., Fath B.D., Yang Z., Sci. of the Total Environ. 408 (2010) 2425–2434.
- 4. Clements F.E., Weaver J.E., Plant ecology. New York, McGraw-Hill, (1929).
- 5. Huang Y., Wen H., Cai J., Cai M., Sun J., Procedia Environ. Sci. 2 (2010) 868-880.
- 6. Paukert C.P., Pitts K.L., Whittier J. B., Olden J.D., Ecol. Ind. 11 (2011) 304-310.
- 7. Cacadora I., Netob J.M., Duartea B., Barrosob D.V., Pintoa M., Marquesb J.C., Ecol. Ind. 25 (2013) 141.
- 8. Kane D.D., Gordon S.I., Munawar M., Charlton M.N., Culver, D.A., Ecol. Ind. 9 (2009) 1234–1247.
- 9. Xu F., Yang Z.F., Chen B., Zhao Y.W., Ecol. Modl. 222 (2011) 201–209.
- 10. Zhang J., Gurkan Z., Jørgensen S.E., Ecol. Modl. 221 (2010) 693-702.
- 11. Xu F.L., Zhao Z.Y., Zhan W., Zhao S.S., Dawson R.W., Tao S., Ecol. Modl. 188 (2005) 327-339.
- 12. Yadav N.S., Kumar A., Sharma M.P., J. of Integr. Sci. and Tech. 2 (2014) 52-56.
- 13. Williams M., Longstaff B., Buchanan B., Llansó R., Dennison W., Marine Poll. Bull. 59 (2009) 14-25.
- 14. Pinilla G., Ecol. Ind. 10 (2010) 848-856.
- 15. Jiang M., Chen H., Chen Q., Wu H., Chen P., Ecol. Ind. 48 (2014) 252–262.
- 16. Cardoso I., Fonseca L. C., Cabral H. N., Marine Poll. Bull. 64 (2012) 1136-1142.
- 17. Huang Y., Wen H., Cai J., Cai M., Sun J., Procedia Environ. Sci. 2 (2010) 868-880.
- 18. Shah R. D. T., Shah D.N., Ecol. Ind. 23 (2012) 447-452.
- 19. Poncet H. T., Bernadet C., Compin A., Limnologica. 47 (2014) 34-43.
- 20. Haase R., Nolte U., Ecol. Ind. 8 (2008) 599 613.
- 21. Duarte B., Freitas J., Couto T., Valentine J., Dias J. M., Silva H., Marques J.C., Cacador I., *Ecol. Ind.* 29 (2013) 390-397.
- 22. Villamarín C., Rieradeval M., Paul M. J., Barbour M. T., Prat N., Ecol. Ind. 29 (2013) 79-92.
- 23. Marzin A., Delaigue O., Logez M., Belliard, J., Pont, D. Ecol. Ind. 43 (2014) 195-204.
- 24. Cabral H. N., Fonseca V. F., Gamito R., Goncalves C. I., Costa J. L., Erzini K., Goncalves K., Martins J., Leite L., Andrade J. P., Ramos S., Bordalo A., Amorim E., Neto J. M., Marques J. C., Rebelo J. E., Silva C., Castro N., Almeida P. R., Domingos I., Gordo L. S., Costa M. J., *Ecol. Ind.* 19 (2012) 144–153.
- 25. Zheng T., You X.Y., Ocean and Coastal Mgmt. 95 (2014) 1-10.
- 26. Zhang F., Liu J., Yang Z., Li Y., Environ. Sci. Engg. 2 (2008) 209-217.
- 27. Yang T., Liu J., Chen Q., Ecol. Modl. 268 (2013) 37-47.
- 28. Wiegand J., Raffaell D., Smart C. R., White P.C.L., J. of Environ. Mgmt. 91 (2010) 1446-1455.
- 29. Kim J.H., Yeom D.H., An K.G., Chemosphere. 108 (2014) 376-382.
- 30. Tlili S., Minguez L., Giamberini L., Geffard A., Boussetta H., Mouneyrac C., Ecol. Ind. 32 (2001) 285-293.
- 31. Kumar A., Chaudhary Om, J. Emerg. Techn. Adv. Engg. 3(201)574-577.
- 32. Kumar A., Sharma M.P., Yadav N.S., J. Mater. Environ. Sci. 5(2014) 1781-1785.
- 33. Yadav N.S., Sharma M.P., Kumar A., J. Mater. Environ. Sci. 6(2015)613-618.
- 34. Zhang Y., Cuia B., LanY., Han Z., Wang T., Guo A., Environ. Sci. 13 (2012) 645–654.

(2015); <u>http://www.jmaterenvironsci.com</u>