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Abstract 
The early biological effects of pesticides was assessed in three species of bivalves: Perna perna, Mytilus galloprovincialis 
and Donax trunculus, exposed to 500 µg/L of malathion Mal (organophosphorous pesticide; OP) and 2,4-
Dichlorophenoxyacetic acid 2,4-D (organochlorinated pesticide; OC). The responses of acetylcholinesterase (AChE, 
biomarker of neurotoxicity), glutathione S-transferase (GST, biomarker of detoxification) and catalase activities; and 
malonedialdhyde levels (CAT and MDA; biomarkers of oxidative stress and lipid peroxidation) were characterized. The 
mortality rate of bivalves was determined as biomarker of general stress. The results revealed critical alterations of the 
measured sub-cellular parameters. The alterations of the biomarkers responses depend on the pesticide and time of 
exposure. AChE showed a significant inhibition in all species along the experiment; which could be explained by 
neurotoxic effect due to the high sensitivity of AChE to pesticides, especially organophosphorous compounds. While, GST 
activity was significantly increased (P< 0.01) after 24h of exposure to 2,4-D (85 % of induction in P. perna at 48h).  CAT 
activity and lipid peroxydation were induced after 12h of exposure to pesticides indicting a high generation of free 
oxyradicals. Meanwhile, mortality increased progressively according the exposure time (more than 30%). The multimarker 
responses used in these experiments demonstrated clearly the early biological effects (biochemical dysfunctions) and 
mortality rate increase of Perna perna, Mytillus galloprovincialis, Donax trunculus exposed to the sub-lethal concentration 
of malathion and 2,4-dichlorophenoxyacetic acid pesticides.  
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1. Introduction 
Pesticide contaminants constitute one of the major environmental concerns. The increasing application of 
pesticides in agriculture causes several environmental problems, leading to harmful effects at different levels of 
the biological organization. These contaminants can reach aquatic ecosystems (marine and fresh waters) via the 
phenomena of agricultural soils scrubbing and material haulage containing potentially toxic residues of 
pesticides which threat species inhabiting these ecosystems [1]. In addition to their variable environmental 
behavior (OC more stable than OP) their persistent proprieties in non-target organisms and ecosystems are not 
excluded [2]. 
Many works on biomonitoring of environmental contamination, especially in marine ecosystems using 
biological indicators in molluscs have been developed. These techniques applied in the international 
biomonitoring programs were proposed by several authors for screening, monitoring and identifying 
environmental risks on aquatic organisms [3-4-5-6] and are of a great interest for developing countries because 
of their simplicity, sensitivity and precocity detection of pollution and their cost effectiveness. 
Some of in situ and in vivo studies carried out in our laboratory have used the biomarkers for the evaluation of 
the contamination by various pollutants [7-8-9-10-11]. This work, aimed to assess the responses of multiple 
biomarkers in three bivalves; Perna perna, Mytilus galloprovincialis and Donax trunculus exposed to malathion 
and 2,4-Dichlorophenoxyacetic acid pesticides. The selected pesticides are extensively used in Morocco (Mal as 
an insecticide and 2,4-D as a herbicide) according to Moroccan phytosanitary index published in 2014 [12]. This 
multiple biomarkers approach could provide more accurate and interpretable data on the complex effects of 
pesticide pollutants. The results may be useful to compare them to other works having developed a similar 
approach to evaluate effects of various contaminants both under field and laboratory conditions [13-14-15]. 
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2. Material and methods 
2.1 Animal sampling and acclimatization 

Three species of bivalves were used in this work; Perna perna and Mytillus galloprovincialis which characterise rocky 
areas of the littoral (mediolittoral zone) and Donax trunculus living in sandy beaches. 40 animals per specie (about 40 mm 
for P. perna and M. galloprovincialis and 20 mm for D. trunculus) were sampled from the reference site (site of Cap Ghir, 
located at 50 Km in the north of Agadir city) and transported in sea water. Once in the laboratory, the animals were kept in 
aquariums with seawater and at air-conditioned room (Salinity = 36 µs/cm2, Temperature = 16 ± 2 and Light regime : 
12h/12h) during 48h. 
 
2.2 Animal contamination  

After 2 days of acclimatization period, mussels (about 60 specimens per set) were transferred to the exposure aquariums 
containing 500 µg/L of each pesticide (Mal or 2,4-D used as chemicals with 99% purity from Sigma-Aldrich ®) in 5L of 
natural seawater originating from the reference site. Controls were separately grouped in non-contaminated sea water. A 
permanent bubbling allows for saturating the medium with oxygen and water was renewed every 2 days for both controls 
and exposed animals. 6 to 8 specimens per species per each tested pesticide and of controls were taken after 0.5 day (12h), 
1 day (24h), 2 days (48h) and 7 days (168h) of exposure and used for analysis. 
 
2.3 Biochemical analysis 

Mussels were dissected and the whole soft tissues of each animal were homogenized with an ultra-turrax (at 5000 rpm), in 
100 mM, pH 7.4 Tris buffer (tris [hydroxymethyl] aminomethane) with ratio of 3ml of Tris solution per 1 gram of fresh 
tissue. The homogenates were centrifuged at 9000 g for 30 min. All procedures were carried out at 4°C. The supernatants 
(S9) were collected and analysed. 
 
2.3.1. Acethylcholinesterase (AChE) determination 

AChE activity was measured according to the method of Ellman et al. [16] by kinetic measurement at 412 nm. Reaction 
mixture contained 5,5'-dithiobis-[2-nitrobenzoic acid] (DTNB) as Ellman's reagent, stock cytosolic containing 
acetylcholinesterase fractions and acetylthiocholine (AsCh) as substrate.  
2.3.2. Catalase (CAT) determination 
CAT activity was determined by the method of Aebi [17], using the enzymatic decomposition rate of hydrogen peroxide 
(H2O2) which is determined by absorbance decrements at 240 nm. 
 
2.3.3. Malondialdehyde content (MDA) determination 

Lipid peroxidation was estimated in terms of malonedialdhyde levels using 1,1,3,3-tetramethoxypropane (TMP) as a 
standard. The reaction was determined at 532 nm using thiobarbituric acid reagent as per the method of Sunderman [18]. 
 
2.3.4. Glutathione S-transferase (GST) determination 

GST activity was assayed by the method described by Habig et al. [19], using glutathione (GSH) and 1-chloro-2,4-
dinitrobenzene (CDNB) as substrate. 
The total proteins concentration in the S9 fraction was determined according to the method of Lowry [20] with bovine 
serum albumin as a reference. 
 
2.4 Mortality rates calculation 

The mortality assessment is performed simultaneously in exposed and non-exposed animals depending on exposure times 
and type of pesticide. Mortality rates in exposed molluscs are calculated compared to non-exposed ones by the following 
formula: 

Xe : number of dead in exposed mussels 
Xn : number of dead in non-exposed mussels 
N : Total exposed mussels 

 
 

2.5 Expression of enzymatic activities and statistical analyses 
Enzymatic activities were expressed as nmol of transformed substrat per minute per milligram protein in S9. While MDA 
content was expressed as nmol equivalent MDA per milligram protein in S9. For each measurement, means and standard 
deviation (m ± SD) were calculated from the 6 to 8 replicas (n= 6 to 8). The comparison of the means was carried out by 
the variance analysis (ANOVA) and the Low Significant Difference test (LSD) using Statistica software (release 10, 
Edition StatSoft, 2010). The significance levels are set at p>0.05 (*) and p>0.01 (**). 
 
3. Results and Discussion 
The effect of Mal and 2,4-D pesticides on AChE activity is shown in the Fig. 1 (a). The results revealed a 
significant decrease (p<0.01) in AChE activity in the three species exposed to the two pesticides. The AChE 
activity diminished gradually from 12 h to 168h of exposure. Indeed, the lowest activities were recorded after 
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Figure 3. Evolution of mortality rates in exposed compared to non-exposed mussels during 7 days exposure to 
pesticides (Mal and 2,4-D) (in %). 
 
Our results showed that tested pesticides exert a notable inhibitory effect on AChE activity in exposed mussels 

especially at the end of the exposure (over than 50% reduced AChE activity in all species at 168h of exposure 
for OP pesticide). Such inhibitory effect of organophosphorous and carbamate insecticides on the cholinesterase 
enzymes is well known [22-23] but its intensity depends on several factors such as the nature of pesticide, levels 
of exposure and studied species [24-25]. Suggestions reported by these authors agreed with our results, relating 
variable response in the species and depending on the type of pesticide. It was also demonstrated, that the 
inhibition of AChE is correlated, whether in vivo or in situ, with increase levels of pesticide in the environment 
[13-5-26-27]. Indeed, the inhibitory effect of pesticides, particularly organophosphates, manifested by the 
irreversible reaction of biotransformation products of pesticides with the hydroxyls groupings of the serine of 
the AChE active site [28-29-30]. A significant reduction (up than 40%) of the brain AChE in fish from polluted 
sites of Italy was reported by Lionetto et al. [31] related with presence in the sediment of great variety of 
compounds, especially pesticide residues. Similar results were affirmed by the study on brain AChE activity 
assessed in fish Seriola dumerilli which significantly inhibited after 7 days of Mal exposure [32]. Cantry et al. 
[33] reported that exposure of the blue mussel, M. edulis, to organophosphorous pesticide for periods of up to 
24h caused a significant reduction in acetylcholinesterase activity. 
Several studies have shown that lipoperoxidation is one of the molecular mechanisms that reflect an early 
toxicity [34] particularly due to contamination by pesticides [35]. They act by inducing oxidative stress and the 
production of free radicals and by the alteration of enzymatic and non-enzymatic defence systems [36]. In the 
same way, some works conducted on the effects of organic substances (pesticides, hydrocarbons …) suggested 
different effects depending on the nature of pollutants and the species. Therefore, Narbonne et al., [5] observed 
that many organic substances including pesticides induce lipid peroxydation in M. galloprovincialis. Thus, our 
results clearly demonstrated the induction of lipid peroxidation in exposed mussels resulting in increasing 
concentrations of MDA, along with a significant induction of CAT activity (antioxidant enzyme) that might be 
due to the effect of Mal and 2,4- D. 
GST isoforms are involved in the metabolism of organochlorinated pesticides [37] and consequently were used 
as biomarkers for these substances and other organic compounds (HAPs and PCBs) in shellfish [38]. This 
affirmation is in perfect agreement with our results revealing high induction of GST in exposed molluscs to 2,4-
D. These compounds seem to exert similar effects as those caused by organic compounds recognized by their 
inductive effect on GST. 
 
Conclusion 
The biochemical effects of sub-lethal concentrations to 500 µg/L of malathion and 2,4-dichlorophenoxyacetic 
acid pesticides was assessed in three species of bivalves: Perna perna, Mytilus galloprovincialis and Donax 

trunculus, under laboratory conditions. The malathion and 2,4-dichlorophenoxyacetic acid pesticides exposures 
caused a significant inductions of glutathion S-transferase, catalase and lipid peroxidation. The increase of 
oxidative stress biomarkers was negatively associated with the AChE inhibition in the three tested species. In 
addition, the present study provides additional evidences for the usefulness of a set of biomarkers in assessing 
the health of bivalves exposed to the models of pesticides. 
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