

Maximization of the heat sink performance used in the arm solar converter

Fadwa HARAKA¹, Ahmed EL OUATOUATI¹, Mourad TAHA JANAN¹.

¹Laboratoire de Mécaniques Procédés et Process Industriels, Université Mohammed V, Ecole Normale Supérieure de l'Enseignement Techniques Rabat, BP 6207, 10000 Rabat, Morocco.

E-mail: fadwa.haraka@gmail.com

Abstract

This study presents an approach for the optimization of the heat sink; which is used for dissipating the heat generated by high power IGBT modules in the arm solar converter. This could be achieved by minimizing the geometry of the heat sink and choosing a good material; I will design these heat sinks using 2D CAD, then i will test the heat sinks using COMSOL by changing the materials and the parameters of the geometry. An algorithm will be done by MATLAB to minimize the volume and found the suitable parameters.

Keywords: Heat sink, Thermal model, Thermal resistance, IGBT modules, 2D CAD.

Introduction

Heat dissipation of the power components is a function that takes more and more importance in electronic power equipment. Heat sink design goals may vary, but the most frequent concern is minimization of the temperature in order to keep the devices in an acceptable working condition. Many ideas pertaining to cooling methods have been proposed [1]. In order to further enhance the cooling of electronic components, R. Sam and G. Sriharsha have been modelled and analysed of heat sink with rectangular fins having through holes, when it is observed from the results that optimum cooling is achieved by the heat sink design which contains interrupted fins with holes. These heat sink designs promises to keep electronic circuits cooler than standard heat sinks and reduction in cost due to reduction in material [2-3]. In addition, the heat transfer performance of various commonly used fin geometries is compared; the geometries are considered for minimizing thermal resistance at moderate laminar air velocities and pressure gradients [4-5], then Keisuke Horiuchi presented the multi-objective optimization of water cooled pin fin heat sinks [10] and Mehran Ahmad presented the design of high performance of a surface air–oil heat exchanger for an aero gas-turbine engine having plate- and pin–fin shaped geometries was investigated numerically [12].

The present paper is devoted to maximize the performance of the heat sink used in arm solar converter [13]; in this study, we are talking about the interaction between two solid objects (the heat sink and the chips) and about the convection, but the radiation will be neglected. In the first place the thermal network model is determinate in order to calculate the thermal resistance of the heat sink. Then an algorithm will be done by MATLAB in order to found sustainable parameters of the geometry; the aim of this model is to optimize the dimensions of the heat sink to minimize its weight. Finally, a 2D finite element model is developed to predict the temperature surface of the heat sink distribution, by the use of three different materials: Aluminium, Copper and Graphite metal. The graphite has an excellent anisotropic thermal conductivitywhich can reach 1500 W/ (m*K) in the c axis direction of the Graphite crystal. The Graphite has also other excellent properties, including low density, low thermal expansion coefficient, good mechanical property [6].

2. Heat sink thermal analysis

A thermal model of arm solar converter is created which's composed of two IGBTs and two diodes. Specifically, it's created for one IGBT and one diode because the study of two others is the same and the simulation will be done in 2-D. All of these devices are fixed in the heat sink as shown in figure 1.To model the dissipated heat from IGBT module; we use the concept of thermal resistance as shown in figure 2.

Figure 1:IGBT and Diode model. Figure 2:Thermal network of IGBT model.

PDIODE

$$R_{\text{sa-IGBT}} = \frac{(T_{j,\text{IGBT}} - T_{a})}{P_{\text{IGBT}}} - (R_{j\text{c-IGBT}} + R_{\text{cs-IGBT}})$$
(1)
$$R_{\text{sa-DIODE}} = \frac{(T_{j,\text{DIODE}} - T_{a})}{P} - (R_{j\text{c-DIODE}} + R_{\text{cs-DIODE}})$$
(2)

Where:

 R_{sa} is the thermal resistance of heat sink, T_j is the junction temperature, T_a is the ambient temperature, P is the power dissipated, R_{jc} is the thermal resistance between the junction and the case, and R_{cs} is the thermal resistance between the case and the heat sink. These values will be estimated from a reel application [7] and from datasheet [8].

3. The geometry configuration

Figure 3: The geometry configuration of the heat sink

As shown in figure 3 the parametery 1 depends on x_1 , and the parameter x_3 depends on heat flux. Where:

$$y_1 = \frac{(0.11 - 8 * x_1)}{7} \tag{3}$$

$$Q_{IGBT} = \frac{P_{IGBT}}{(0.006 * x_3)}$$
(4)

$$Q_{\text{DIODE}} = \frac{P_{\text{DIODE}}}{(0.004 * x_3)}$$
(5)

Q is the heat flux (W/m^2) .

J. Mater. Environ. Sci. 6 (12) (2015) 3423-3429 ISSN : 2028-2508 CODEN: JMESCN

We'll use three cases for each of the three geometric parameters as shown in table 1; taken from profiles Ferraz Shawmut/ Mersen [9], then the number of combinations simulating is seventeen, they will be simulated in COMSOL.

Parameters	Case I	Case II	Case III
	(m)	(m)	(m)
x1	0.001	0.005	0.01
x2	0.03	0.045	0.05
x3	0.05	0.055	0.07

Table 1:The cases chosen for three design parameters

4. The property parameters of materials

Usually metals are the materials that have the highest conductivity. That is why all heat sinks are usually made of metals. Aluminium is one of the most common metals used to make heat sinks because of its relatively high thermal conductivity and ease of manufacturing. And also the copper is one of the best materials used for heat sinks; its thermalconductivity is nearly double that of aluminium, however, copper is much heavier (density) than aluminium, and much more expensive. In addition the graphite is the patent material of a company in Shanghai, which has an excellent anisotropic thermal conductivity, and the thermal conductivity can reach 1500 W/(m.K) in the c axis direction of the graphite crystal. The graphite also has other excellent properties, including low density, low thermal expansion coefficient, good mechanical property, so it will become the focus of the emerging heat dissipation materials and have great application and commercial space. The parameters of several common materials are showed in table 2 [6].

	Properties				
Materials	Thermal conductivity W/(m*k)	Density Kg/m ³	Specific heat J/(kg*k)		
Copper	398	8930	902		
Aluminium	236	2710	386		
Graphite	1500 50 ~ 60	700 ~ 210	1400 ~ 1600		

 Table 2: The materials properties(293K).

5. Simulation results and analysis

5.1. Simulation by COMSOL

The dissipated heat is transmitted by conduction from the top of the base plate to a heat sink through the fins; afterwards this heat is transferred from the heat sink to ambient air by convection. Then, seventeen models have been tested for aluminium material as shown in table 3,with thermal conductivity $k = 236W/(m^*k)$, density $\rho = 2710 \text{ kg/m}^3 \text{ Cp} = 386 \text{ J/ (kg.k)}$ and Specific heat to calculate the junction temperature of the IGBT and diode, in the figure 4 only four cases of simulations are shown. The model used in COMSOL is "Heat Transfer in Solids" and Q = 0. The equation model is:

$$\rho C \mathbf{p} . \Delta \mathbf{T} = \nabla (\mathbf{k} \Delta \mathbf{T}) + \mathbf{Q}$$

With boundary conditions:

- Convective heat flux applied in all surfaces except the top surface of the heat sink (is adiabatic) $h = 100 w/(m^2.k)$;
- Heat flux applied in IGBT chip (calculated with different values of x₃);
- Heat flux applied in Diode chip (calculated with different values of x₃).

Figure 4: Four examples of simulation by Comsol

X1(m)	X2(m)	X3(m)	$T_{s,IGBT}(^{\circ}C)$	$T_{s,Diode}(^{\circ}C)$	
0.001	0.03	0.05	103	99	
0.001	0.03	0.055	96.7	92	
0.001	0.03	0.06	91.8	88	
0.001	0.045	0.055	95.2	90	
0.001	0.045	0.06	89.2	85	
0.005	0.03	0.05	97.8	94	
0.005	0.03	0.055	92.3	88	
0.005	0.03	0.06	88.1	84	
0.005	0.045	0.05	95.6	90	
0.005	0.045	0.055	86.9	81	
0.005	0.045	0.06	82	78	
0.01	0.03	0.05	96.8	92	
0.01	0.03	0.055	91.6	88	
0.01	0.03	0.06	87.4	84	
0.01	0.045	0.05	92.3	85	
0.01	0.045	0.055	85	80	
0.01	0.045	0.06	80.7	76	

Table 3: The simulation by Comsol

5.2. An algorithm to model the thermal heat sink resistance

We consider a real application of IGBT Modules in the arm solar converter [7] with the following data (taken from datasheet [8]): $T_{j,IGBT}=150^{\circ}C$, $P_{IGBT}=100W$, $P_{DIODE}=50W$, $T_{j,DIODE}=125^{\circ}C$, $T_a=25^{\circ}C$, R_{jc} -IGBT=0.125°C/W, R_{cs} -IGBT=0.025°C/W, R_{jc} -DIODE=0.26°C/W and R_{cs} -DIODE=0.025°C/W.

We replace these parameters in equation (1) and (2), and then we found: $R_{sa-IGBT}=1.1^{\circ}C/W$ and $R_{sa-DIODE}=1.725^{\circ}C/W$. With the same method, we found: $T_{s,IGBT}=135^{\circ}C$ and $T_{s,DIODE}=111.25^{\circ}C$.

The main idea is based on simulating of an application of the heat dissipation corresponding to the power dissipated over the 2 chips (IGBT, Diode) using COMSOL. The simulation includes 18 different heat sinks that should lower the temperature under $T_{s,IGBT}$ and $T_{s,DIODE}$ for the 2 chips.

After applying a linear regression over the results of the simulation founding in Table 3, we found this two equations between the geometric parameters and the temperatures:

 $T_{\text{s,IGBT}} = 0.007657 x_1^{-1} - 143.519 x_1 - 2.92785 x_2^{-1} - 2402.85 x_2 + 8.965 x_3^{-1} + 1766.667 x_3 \tag{6}$

 $\mathbf{T}_{\text{s,DIODE}} = \mathbf{0}.\,\mathbf{007176x_1}^{-1} - \mathbf{189}.\,\mathbf{715x_1} - \mathbf{3}.\,\mathbf{33375x_2}^{-1} - \mathbf{2795}.\,\mathbf{37x_2} + \mathbf{9}.\,\mathbf{35x_3}^{-1} + \mathbf{233}.\,\mathbf{333x_3} \tag{7}$

With good correlation ($R^2 = 99.96\%$ for the IGBT's temperature and $R^2 = 99.97\%$ for the diode's temperature), we then found the optimum volume for the heat sink by using the fmincon command (Matlab) in maple: Minimum of S(x1, x2, x3) such that: $T_{s,l}$ $f_{s,l} \in \mathbb{T} \leq 135^{\circ}C$

 $\begin{cases} T_{s,\text{DIODE}} \leq 111.25 \\ 0.001 \leq x_1 \leq 0.01 \\ 0.03 \leq x_2 \leq 0.05 \\ 0.05 \leq x_3 \leq 0.07 \end{cases}$ S(x1, x2, x3) is the section of the heat sink. And we found: $x_1 = 0.001m$; $x_2 = 0.045m$; $x_3 = 0.05m$.

5.3. Simulation with different materials:

The simulation of the heat sink with the parameters founding and with Aluminiumis shown in figure 5:

The simulation of the heat sink with the parameters founding and with copperis shown in figure 6:

Ayeni et al.

Figure 7: Heat sink with Graphite.

5.4. Results and analysis

Figure 9: The surface heat sink = f(The surface temperature of the heat sink)

Between the three materials (Aluminum, Copper and Graphite) simulated, we concluded that the Graphite is the most efficient heat dissipating one as shown in figure 7.

The figure 8 shows that all cases meet the thermal condition $(T_{s,IGBT} \le 135^{\circ}C, T_{s,Diode} \le 111.25)c)$, even the case found by the weight optimizing algorithm. It's true that the temperature implied by our algorithm is the highest of all the other cases; still it satisfies the thermal condition. Moreover it needs less materiel as shown in figure 9.

Conclusion

The choice of the optimum heat sink can be achieved by using a complete simulation of the heat dissipation within it. In our case, we could achieve cold temperature $(106^{\circ}C)$ by using very small heat sink. Using a different material can increase the temperature.

References

- 1. Zhang Z., "Gestion thermique des composants d'électronique de puissance-Utilisation des diamants CVD," Phd, Institut National Polytechnique de Toulouse, (2012) 28-32.
- 2. Sam Sukumar R., Sriharsha G., Bala Arun S., Dilipkumar P., Sanyasi Naidu Ch., *International Journal of Engineering Research and Applications (IJERA)* 3 (2013) 1557-1561.
- 3. Jones D. and Smith F., Journal of Heat Transfer 92 (2010) 11-16.
- 4. Behnia M., Copeland D., and Sood phadakee D., *Proceedings of The Sixth Inter society Conference on Thermal and Thermomechanical Phenomena in Electronic Systems* 27 (2012) 310–315.
- 5. Yovanovich M., Culham M. and TeertstraP., *Electronics Cooling* 3 (1997) 24 29.
- 6. Liu Y.P., Xu P. and Zhu Q., Journal of environmental Engineering and Technology 3 (2012) 214-220.
- 7. Haddou A., Haraka F., Elomari H., *Renewable and Sustainable Energy Conference (IRSEC)* (2014) 511-514.
- 8. Infineon FF300RI7KE3., *IGBT-modules Technical Information* (2013).
- 9. Arzandé A., "Heat sink analytical modeling," Master thesis, École Supérieure d'Électricité SUPELEC, (2011) 43-47.
- 10. Keisuke H., Atsuo N., Kayzuyoki S., International Journal of Heat and Mass Transfer 81 (2015) 760-766.
- 11. Mehran A., Mohammad F., Majid B., International Journal of Heat and Mass Transfer 87 (2015) 11-23.
- 12. Minsung Kim, ManYeong, June Kee, International Journal of Heat and Mass Transfer 93 (2016) 637-652.
- 13. Chang-Hung H. and Guang-Yi F., International Journal of Heat and Mass Transfer 92 (2016) 523-538.

(2015) ; <u>http://www.jmaterenvironsci.com/</u>