

Assessment of River health of Chambal River based on Biological Communities, India

Amit Kumar^{1*} M.P. Sharma² and Naresh Singh Yadav³

^{1,2}Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India ³Deputy Conservator, Department of Forest, Government of Madhya Pradesh, 462023, India

Received 23 Dec 2014, Revised 17 Aug 2015, Accepted 22 Aug 2015 *Corresponding author: E-mail: amit.agl09@gmail.com, Mobile: +91-9045939559

Abstract

Local biota and their ecological attributes is an indicator of varying conditions in aquatic ecosystems. Biological diversity was used to calculate pollution index of Chambal River, in National Chambal sanctuary in Madhya Pradesh (M.P). The Biotic species present in the areas provides robust physico-chemical interaction between terrestrial and aquatic ecosystems. The present paper focused on the biological community to assess the pollution status of Chambal River, M.P, during June 2012 to May 2013. The average Simpson diversity index and Shannon's diversity index was found as 0.66–0.81 and 1.58–1.72 respectively indicating moderate health of Chambal River. Similarly, the average richness indices i.e. Margalef and Menhinick richness indices were found as 0.61–0.73 and 0.35–0.51 respectively indicating again the moderate health of the river. The diversity and richness indices is an indication of moderate river health which can be taken care by taking appropriate corrective measures to keep the water quality in good condition. The study indicates that water of the stretch is not fit for drinking but can be used for irrigation, bathing, aquaculture etc.

Keywords: Biodiversity, River, Pollution, index, Biotic

1. Introduction

Water is the most important element for all life forms on the earth. The living forms require water for almost all the vital metabolic activities. It is believed that life originated on the earth in shallow warm water. Even after millions of years of evolution of life, the importance of water has not changed for the living forms. Life still thrives in plenty both in freshwater & marine environment. Though, some life forms evolved and moved to land during their evolutionary course, the importance of water still remained the same for their survival. The biological properties of freshwater ecosystem is defined by the whole complex of animals and plants inhabiting water bodies and interrelations between living organisms and the physic-chemical conditions of water body and its catchments. These conditions are mainly influenced by climate, geographical location and type of water bodies. The River Chambal is the most significant water resource of the state of Madhya Pradesh (M.P) catering to the demand of a large number of cities and towns situated on its banks. Apart from the supply of potable water, the river is also ecologically very important as it harbours very rich biodiversity [1-2]. The Chambal River is considered pollution free [3-7] and hosts an amazing riverine faunal assemblage including 2 species of crocodilians viz. Mugger and Gharial, 8 species of freshwater turtles, smooth-coated otters, Gangetic river dolphins, skimmers, black-billed terns, sarus cranes and black-necked storks, amongst other large number of migratory birds. It is observed that in order to conduct extensive studies on aquatic flora and fauna, very little significance is given to tropical biota in the context of water quality classification and its managements. Though tropical biota are often the essential part of aquatic ecosystems that anti-pollution programmes are targeted to protect, however the local biota and their ecological components may be used to provide information on changing conditions in freshwater ecosystem. Among various available water resources, Lakes & Rivers are very significant segment of aquatic ecosystem. Unfortunately, most of the water bodies especially the major rivers in India are contaminated due to large number of anthropogenic activities. The problem of water quality deterioration is mainly due to human activities such as disposal of dead bodies, discharge of industrial and sewage wastes and agricultural runoff which are major cause of ecological damage and poses serious health hazards [8]. River pollution in India has now reached to a point of crisis due to unplanned urbanization and rapid growth of industrialization [9]. The entire array of life in water is affected due to pollution in water. The River Chambal which is a major river in Central India is no exception. The river has been reported to be polluted at many places due to discharge of industrial effluent and domestic sewage. The discharge of waste water not only degrades the water quality of the river but also affects the biodiversity in it. The present study evaluates the health of the Chambal River based on Macrophytes, Macrobenthos, Phytoplankton and Zooplankton using species diversity and richness indices. Consequently, different indices of diversity were taken into account to highlight their importance with respect to river health assessment.

2. Material and Methods

2.1. Study Area

The River Chambal originates near the Janapao temple at about 24 km south-west away from Mhow in M.P at an elevation of 854.35 m. At the origin, there are three minor streams which are 1.6 to 2.4 km in length around the temple. These streams meet the river Chambal. The Chambal is a perennial river in M.P. The stretch of river contained in the National Chambal sanctuary (25°23'52''N, 76°28'15'' E) extends upto a distance of 600 km downstream from Kota (Rajasthan) to the confluence of the Chambal with the Yamuna river (Etawah) a major tributary of river Ganga. In fact, this river forms the boundary between Rajasthan and M.P and M.P and Uttar Pradesh (U.P). Within the sanctuary (river length of approximately 600 km), the river flows through the areas of deeply eroded alluvium, Stony rapid, sand banks and gravel bars which are in abundance, and there are many steep banks and bends, where the depth of water exceeds even 10 m. The field study was conducted in an entire stretch of 59 kms from Rajghat to Kussidghat. Details of sampling point and its location has been given in our previous paper [6].

2.2 Methodology

For the qualitative and quantitative analysis, the seasonal water samples were collected from 100 m upstream, centre and 100 m downstream of the river near National Chambal sanctuary during the period June 2012- May 2013. For the collection of plankton samples (both Phytoplankton & Zooplankton), plankton net (Nylon bolt No: 22) of mesh size 25µm was used. During sampling, 10 litres of water samples were collected by Ruttner Water Sampler (a type of Niskin type water sampler) which was filtered through the plankton net and concentrated to 50 ml sub- sample. The collected sample was then preserved with 5% formaldehyde solution and iodine for analysis of zooplankton and phytoplankton sample respectively. Plankton was studied under compound microscope and was identified with the help of standard references [10]. The results are expressed in organism /litre. In order to find out the relationship between macrophytic and macrobenthic fauna, macrophyte was collected with the help of iron hook from different locations of the study stretch and was kept in bucket so as to isolate the attached fauna. Then they were segregated using sieve no. 40 mesh size sieve. The organisms retained were then identified as per the macrobenthic invertebrates. The special adaptations and texanomic details of macrophytes were identified with the help of pertinent literature APHA [11] and Adoni [12]. To understand a particular biotic community, it is important to work out certain indices such as Diversity indices viz., Shannon and Simpson diversity index (1949) and Menhinik (1964) and Margalef index (1967). These were computed by following equations which have been discussed in Table 1.

3. Results

It is established fact that pollution of any river drastically reduces the number of species of the aquatic system (i.e., Species Diversity) while frequently creating a conducive environment that is favorable to only few species (i.e., pollution-tolerant forms). Thus, in a polluted river, there are normally large numbers of few species, while

in a pristine river there are moderate numbers of many useful species. The change in total number of biological communities at different sampling locations during the period June 2012 to May 2013 has been illustrated in Table 2-4.

Items	Species Ricl	nness Indices	Species Divers	ty Indices		
Name of Index	Margalef's	Menhinik richness	Simpson's diversity	Shannon-Weiner		
	richness index	index (MERI)	index (SDI)	diversity index		
	(MARI)			(SWDI or H)		
Equations	$MARI = \frac{S-1}{\ln(N)}$	$MERI = \frac{S}{\sqrt{N}}$	$SDI = \sum_{i=1}^{s} \frac{ni(ni-1)}{n(n-1)}$	$H = -\sum_{i=1}^{s} (pi \ln(pi))$		
Range of indexes	(0−∞)	0-1	0-1	0-5		
and its description	$(0-\ln(S))$	0 indicates all	Where, 0 represents	Where, 0		
		taxa are equally	infinite diversity and 1	represents for		
		present and 1	no diversity.	communities with		
		indicates one		only a single taxon		
		taxon dominates		and 5 for		
		the community		communities with		
		completely.		many taxa.		
River health	Larger the index,	Larger the index,	Low: the environment	H> 4: Very good		
	more healthy the	more healthy the	is quite stressful with	H = 3-4: Good		
	river, 1s/or vice	river, 1s/or vice	relatively few	H= 2-3: Moderate		
	versa.	versa.	ecological niches and	H=1-2: Poor U<1: Voru noor		
			only a few organisms	$\Pi < 1$. Very poor		
			environment			
			High a greater number			
			of successful species			
			and a more stable			
			ecosystem.			
References	[15-16]	[14]	[13]	[17]		
Where, $S =$ the number	r of species in a sam	ple, $N =$ the number of	f individuals in a communit	y, $n =$ the number of		
individuals in a sample	from a population, <i>ni</i>	= the number of indiv	iduals in a species <i>i</i> of a sam	ple from a population,		
<i>pi</i> is the proportion of i	th species in the total sa	ample.				

Table 1: Details of Species Richness and Spec	cies Diversity indices
---	------------------------

Table 2: Average number of Biological species found in Chambal River during June 2012- May 2013 at Upstream

Sl. No	Macrophytes	Macrobenthos	Phytoplankton	Zooplankton
	Azolla pinnata	Bellamya	Amphora sp	Alona sp
		bengalensis		
	Ceratophyllum	Bellamya	Ankistrodesmus falcatus	Alonella sp
	demersum	dissimilis		
	Chara branchypus	Thiara scabra	Arthrospira sp	Amoeba sp
	Cyperus articulatus	Thiara tuberculata	Asterionella sp	Anuraeopsis sp
	Hydrilla verticillata	Tarebia lineata	Botryococcus brauni	Arcella discoides
	Hydrocharis dubia	Lymnaea	Caloneis sp	Arcella sp

	acuminata		
Ludwigia adscendens	Pila globosa	Characium limneticum	Arcella vulgaris
Myriophyllum spathulatum	Unio species	Chlorella humicola	Asplancha sp
Najas minor	Corbicula striatella	Chlorella vulgaris	Bosmina sp
Spirodella polyrhiza	Gyraulus convexiusculus	Chlorococcum humicola	Brachionus angularis
Utricularia flexuosa	_	Chlorococcum sp	Brachionus bidentata
Vallisneria spiralis	-	Closteriopsis sp	Brachionus calvciflorus
_	_	Closterium reticulatum	Brachionus caudatus
_	_	Closterium cambrium	Brachionus falacatus
_	_	Coelastrum microporum	Brachionus patalus
_	_	Coelastrum recticulatum	Calanoides sp
_	_	Cosmarium quinarium	Centrocypris sp
_	_	Cosmarium sp	Centropyxis aculeata
_	_	Crucigenia sp	Ceriodaphnia sp
_	_	Cvclotella sp	Chvdorus sp
_	_	Cymbella sp	Cyclops sp
_	_	Denticulla sp	Cypris sp
_	_	Diatoma sp	Daphnia sp
_	_	Diatomella sp	Diantomus sp
_	_	Elkatothrix denticulatum	Difflugia sp
_	_	Elkatothrix viridis	Filina longistata
_	_	Epithemia turgida	Filina sp
_	_	Euastrum bidentatum	Hexarthra sp
_	_	Eudorina elegans	Keratella tropica
_	_	Filmente sp	Lacrymaria sp
_	_	Fragillaria sp	Lecane sp
_	_	Frustula sp	Lepadella
_	_	Gloeotrichia sp	Mesocyclops
_	_	Gomphonema sp	Moina sp
_	_	Hanzchia sp	Monostyla sp
_	_	Kirchneriella contorta	Mytilina sp
_	_	Melosira granulata	Paramecium sp
_	_	Melosira varians	Phyllodiaptomus
_	_	Merismopedia sp	Polyarthra
_	_	Microcystis aeruginosa	Stenocypris sp
_	_	Navicula sp	-
_	_	Nitzschia sp	_
_	_	Oedogonium svlvaticum	_
_	_	Oocystis lacustris	_
_	_	Oscillatoria maxima	_
_	_	Oscillatoria sp	_
_	_	Oscillatoria tenius	_

	-	-	Pediastrum duplex	_
	-	-	Pediastrum simplex	-
	-	-	Peridinium sp	-
	-	-	Pinnularia sp	-
	_	-	Rhopalodia sp	_
	-	-	Scenedesmus alterans	-
	_	-	Scenedesmus sp	_
	_	-	Schroederia sp	_
	_	-	Selenestrum sp	-
	_	_	Spirogyra elongota	_
,	_	-	Spirogyra sp	_
	_	_	Synedra ulna	-
	_	_	Tabellaria sp	_
	-	-	Tetradon sp	-
	_	_	Trachelomonus sp	-
	_	_	Treubaria sp	_
	_	-	Ulothrix sp	_
	_	_	Volvox sp	_
Total	12	10	65	41

Table 3:	Average number of Biological species found in Chambal River during June 2012- May 201	13 at
Centre		

Sl. No	Macrophytes	Macrobenthos	Phytoplankton	Zooplankton
1.	Azolla pinnata	Bellamya	Amphora sp	Alonella sp
		dissimilis		
2.	Ceratophyllum	Thiara	Asterionella sp	Bosmina sp
	demersum	tuberculata		
3.	Chara branchypus	Lymnaea	Caloneis sp	Brachionus bidentata
		acuminata		
4.	Cyperus articulatus	Pila globosa	Chlorella humicola	Brachionus patalus
5.	Hydrilla verticillata	Unio species	Chlorococcum	Ceriodaphnia sp
			humicola	
6.	Ludwigia adscendens	-	Closterium	Chydorus sp
			reticulatum	
7.	Myriophyllum	_	Coelastrum	Cyclops sp
	spathulatum		recticulatum	
8.	Najas minor	_	Cosmarium	Daphnia sp
			quinarium	
9.	Vallisneria spiralis	-	Crucigenia sp	Diaptomus sp
10.	-	-	Denticulla sp	Mesocyclops sp
11.	-	-	Diatoma sp	_
12.	_	-	Elkatothrix viridis	_
13.	_	_	Epithemia turgida	_
14.	_		Eudorina elegans	_
15.	_	_	Filmente sp	_
16.	_		Fragillaria sp	-

17.	-	-	Frustula sp	_
18.		_	Hanzchia sp	_
19.	-	—	Kirchneriella contorta	_
20.	_	—	Melosira granulata	-
21.	_	—	Melosira varians	-
22.	_	—	Merismopedia sp	-
23.	_	—	Navicula sp	-
24.	_	—	Nitzschia sp	-
25.	-	_	Oedogonium	_
			sylvaticum	
26.	_	—	Oscillatoria maxima	—
27.	_	—	Pediastrum simplex	_
28.	_	—	Pinnularia sp	_
29.	_	—	Scenedesmus alterans	-
30.	_	_	Spirogyra elongota	_
31.	_	_	Spirogyra sp	-
32.	_	_	Synedra ulna	-
33.	_	_	Tabellaria sp	_
34.	_	-	Tetradon sp	_
35.	_	_	Ulothrix sp	_
36.	-	_	Volvox sp	_
Total	9	5	36	10

Table 4: Average number of Biological species found in Chambal River during June 2012- May 2013 at Downstrea
--

Sl. No	Macrophytes	Macrobenthos	Phytoplankton	Zooplankton
	Ceratophyllum	Bellamya	Amphora sp	Alona sp
	demersum	bengalensis		
	Chara branchypus	Thiara	Asterionella sp	Alonella sp
		tuberculata		
	Cyperus articulatus	Lymnaea	Chlorella humicola	Amoeba sp
		acuminata		
	Hydrilla verticillata	Unio species	Chlorococcum humicola	Anuraeopsis sp
	Hydrocharis dubia	Corbicula	Closterium reticulatum	Arcella discoides
		striatella		
	Ludwigia adscendens	Gyraulus	Closterium cambrium	Arcella sp
		convexiusculus		
	Myriophyllum	-	Coelastrum recticulatum	Arcella vulgaris
	spathulatum			
	Najas minor	—	Cosmarium quinarium	Asplancha sp
	Utricularia flexuosa	_	Crucigenia sp	Bosmina sp
	Vallisneria spiralis	_	Cyclotella sp	Brachionus bidentata
	_	_	Cymbella sp	Brachionus calyciflorus
	_	_	Diatomella sp	Brachionus caudatus
	_	_	Epithemia turgida	Brachionus falacatus
		_	Eudorina elegans	Calanoides sp
	_	_	Fragillaria sp	Centrocypris sp

			Frustula sp	Centropyxis aculeata
	-	-	Gomphonema sp	Ceriodaphnia sp
	-	-	Kirchneriella contorta	Chydorus sp
	_	-	Melosira granulata	Cyclops sp
	_	-	Navicula sp	Cypris sp
	_	_	Nitzschia sp	Daphnia sp
	_	_	Oedogonium sylvaticum	Diaptomus sp
	_	-	Oscillatoria maxima	Difflugia sp
	_	_	Pediastrum duplex	Filina sp
	-	-	Pediastrum simplex	Hexarthra sp
	-	-	Pinnularia sp	_
	_	_	Rhopalodia sp	Mesocyclops
	_	_	Scenedesmus alterans	Moina sp
	_	-	Selenestrum sp	_
	_	—	Spirogyra elongota	_
	_	_	Synedra ulna	_
	_	_	Tabellaria sp	_
	_	_	Tetradon sp	_
Total	10	6	33	28

At upstream, 12 number of macrophyte species of different groups were identified while number of macrobenthos observed at this station was 10. Among plankton communities, 65 phytoplankton species were observed at this station whereas, number of zooplankton species recorded was 41 (Table 2). Similarly, at centre of the river, total 9 number of macrophyte species of different groups were observed while macrobenthos recorded at this station was 5 (Table 3). The plankton community's on the other hand depicted 36 phytoplankton species whereas, at downstream of the river, total 10 macrophyte species of different groups were observed while number of macrobenthos recorded at this station was 6. The plankton communities on the other hand depicted 33 phytoplankton species and 28 zooplankton species (Table 4). The variation of biotic community at various stretches of Chambal River, as shown in figure 1 and the calculation of various diversity indices, ranges and its health status at all sampling site of Chambal River in National Chambal Sanctuary have been shown in Table 5.

Figure 1: Variation of biological community at different locations in Chambal

Items	Margalef's richness index		Menhinik index		Shannon's diversity index		Simpson diversity index					
	U/s	Centre	D/s	U/s	Centre	D/s	U/s	Centre	D/s	U/s	Centre	D/s
	0.618	0.732	0.69	0.353	0.516	0.455	1.63	1.58	1.724	0.74	0.814	0.66
Ranges		(0−∞)			0-1			0-5			0-1	
River health	****	****	****	****	****	****	****	****	****	****	****	****

Table 5: Calculation of diversity indices for sampling site in Chambal River

Where; U/s means upstream location of river; D/s means downstream location of river; **** means moderately polluted river

4. Discussions

The analysis of the river health associated with the biotic community in the study stretch was quantitatively rich. According to the results of present investigation, it is concluded that the biological community in Chambal River changes frequently with the change in locations owing to the changing environmental factors mainly temperature and humidity observed in such shallow Chambal River. Similar pattern of changes in phytoplankton community in different freshwater bodies were recorded by Sharma (1980); Sharma et al. (1982) and Deorari (1993) [18-20]. During present study, it was seen that at different locations diversity indices vary. The Margalef and Menhinik richness indices were high at centre i.e. 0.73 and 0.51 as compared to other locations. The Shannon's diversity index is maximum (1.72) at downstream and lower (1.58) at centre. A community becomes more divergent as the stress increases and accordingly species diversity diminishes with poor water quality. A community dominated by relatively few species indicates environmental stress [21]. The Shannon's index (1.58-1.72) obtained during this study indicates moderate pollution in the Chambal River. The Simpson index (0.66-0.81) indicates an increase in dominance of fewer species at downstream due to high variation in water quality. According to this range, the Chambal River is moderately polluted. The Margalef and Menhinick richness indices ranged from 0.61 to 0.69 and from 0.35 to 0.51 respectively, which indicate moderate richness of the organisms. The moderate health of the study stretch of Chambal River can also be authenticated by the results of our published work [4-6] based on water quality and riparian vegetations. To bring about the improvement in the river health, the corrective conservation measures may be appropriately taken by concerned authorities so that river pollution is reduced in future.

Conclusions

The present study was conducted based on the Macrophytes, Macrobenthos, Phytoplankton and Zooplankton, the diversity and richness indices were assessed in 58 km study stretch in U/s, D/s and Centre of Chambal River during June 2012 to May 2013. The average Simpson diversity index and Shannon's diversity index was found as 0.66-0.81 & 1.58-1.72 respectively indicating moderate health of Chambal River. Similarly, the richness indices i.e. Margalef and Menhinick richness indices were found as 0.61 -0.73 & 0.35-0.51 respectively indicating again the moderate health of the river. The diversity and richness indices is an indication of moderate river health which can be taken care by taking appropriate corrective measures to keep the water quality in good condition. The study concludes that water of the stretch is not fit for drinking but can be used for irrigation, bathing, aquaculture etc. In order to improve the river health, it is suggested that proper conservation plan to be implemented to provide favourable habitat for the aquatic fauna/flora.

Acknowledgement

One of the authors (NSY) is thankful to NRCD, Ministry of Environment and Forests, Government of India, New Delhi for providing the financial assistance in the form of sponsorship for M. Tech degree programme in EMRL offered by the AHEC, IITR, Roorkee, India. Authors are highly grateful to the reviewers for their valuable comments.

References

- 1. Crawford A.R., Nature. 223 (1969) 380 384.
- 2. Verma D.M., Balakrishnan N.P., Dixit R.D., *Flora of M.P.* Botanical Survey of India, Calcutta, India, (1993).
- 3. Hussain S., Sharma R.K., Dasgupta N., Raha A., Assessment of minimum water flow requirements of Chambal River in the context of Gharial (Gavialis gangeticus) and Gangetic Dolphin (Platanista gangetica) conservation www.wii.gov.in. Wildlife Institute of India, (2011), (Accessed on 11 February 2014).
- 4. Yadav N.S., Kumar A., Sharma M.P., J. Integr. Sci. Techno. 2 (2014a) 52-56.
- 5. Kumar A., Sharma M.P., Yadav N.S., J. Mater. Environ. Sci. 5 (2014b) 1781-1785.
- 6. Yadav N.S., Sharma M.P., Kumar A., J. Mater. Environ. Sci. 6 (2015c) 613-618.
- 7. Yadav N.S., Sharma M.P., Kumar A., Pani S., Water Quality Assessment of Chambal River in National Chambal Sanctuary of Madhya Pradesh. *Ecological sustainability: Concept, Principle, Evidences and Innovations*, (2014d), JNU, Delhi, India.
- 8. Saksena D.N., Garg R.K., Rao R.J., J. Environ. Bio. 29 (2008) 701-710.
- 9. Meitei N.S., Bhargava V., Patil P.M., J. Aqua. Bio. 19 (2004) 77-78.
- 10. Agarker M.S., Goswami H.K., Kaushik S., Mishra S.M., Bajpai A.K., Sharma U.S., *Bionature*. 14 (1994) 250-273.
- 11. APHA, AWWA., Standard methods for analysis of water and wastewater 19th edition, (2005).
- 12. Adoni A., Joshi D.G., Gosh K., Chourasia S.K., Vaishya A.K., Manoj Y., Verma, H.G., Work book on limnology. (1985) 1-166.
- 13. Simpson E.H., Nature. 163 (1949) 688.
- 14. Menhinick E.F., Ecology. 45 (1964) 859-861.
- 15. Margalef R., Oceanogr. Mar. Biol. Ann. 5 (1967) 257-289.
- 16. Nils L.L., Tron E., Fore. Ecolo. Manage. 222 (2006) 17-28.
- 17. Shannon C.E., Weaver W., The Bell System Technical Journal, 27 (1948) 379-423, 623-656.
- 18. Sharma A.P., *Phytoplankton primary production and nutrient relations in Nainital Lake*. Ph. D. thesis, Kumaon University, (1980), Nainital, India.
- 19. Sharma AP., Jaiswal S.J., Negi N., Pant M.C., Arch. Hydrobio. 93 (1982) 173-193.
- 20. Deorari B.P., Productive potential of a manmade reservoir of Tarai of Uttar Pradesh with particular reference to fish fauna. Ph. D. Thesis. Rohilkhand University, (1993), Bareilly, India.
- 21. Plafkin J.L., Barber M.T., Poter K.D., Gross S.K., Highes R.M. *Rapid bioassessment protocol for use in streams and rivers for benthic macro invertebrates and fish*. EPA/ 444/ 4-89/001, Office of water regulation and standards. U.S. Environmental Protection Agency, (1989), Washingaton DC, USA.

(2015); <u>http://www.jmaterenvironsci.com</u>