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1. Introduction 

     Understanding the erosive power of precipitation is fundamental in any strategy to combat 

water erosion caused by rain. This knowledge is crucial as it helps predict erosive risk due to rainfall, 

in order to take the necessary precautions to prevent related damage such as sedimentation of dams, 

soil surface stripping, damage to road infrastructure, etc. The erosive power of a rainfall event depends 

on the characteristics of the raindrops (size, speed, shape, and impact angle), the rainfall event itself 

(type, intensity, and duration), and is evaluated using an indicator known as the erosivity factor (or 

index) of rain. This factor characterizes the erosive force of precipitation on soil. Its calculation requires 

instantaneous rainfall measurements (pluviograms), which are not always available over long periods 

(Renard et al., 1994). To circumvent this difficulty, Wischmeier and Smith (1978), pioneers in this 

study, determined the rain erosivity factor based on total kinetic energy and maximum rainfall intensity 

over thirty minutes in the absence of data on raindrop distribution. Most subsequent studies worldwide 
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Abstract: This study proposes an approach for analyzing and modeling the erosive 

power of rainfall events to predict and assess the erosive risk based on the drop size 

distribution (DSD) of rain. The analysis relied on the proportions of identified 

potentially erosive rainfall events, cumulative rainfall amounts, and total kinetic 

energy. The modeling involved establishing two models Rj-KEj and Rj-Ij to estimate 

the erosivity factor Rj from the total kinetic energy KEj and the intensity Ij of a 

potentially erosive rainfall event j, respectively. Statistical criteria were used to 

evaluate the ability of these models to estimate the erosivity factor of any erosive 

rainfall event. The analysis revealed that 40.86% of all rainfall events are potentially 

erosive, with peaks in cumulative amounts and kinetic energy. The study further 

revealed that 71.29% of the total cumulative rainfall and 76.65% of the total kinetic 

energy come from these erosive rainfall events, which are responsible for the 

majority of the erosive risk associated with precipitation. The statistical criteria 

values demonstrated the effectiveness of the two models Rj-KEj and Rj-Ij in 

reproducing the erosivity factor of any erosive rainfall event.  
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have determined the erosivity index from daily (Richardson et al., 1983; Petkovsek and Mikos, 2004), 

monthly (Grimm et al., 2003), annual (Renard and Freimund, 1994; Brown and Foster, 1987; etc.), and 

interannual (Arnoldus, 1977) rainfall data. 

Surprised by the number of papers collected from Scopus using “rainfall & modelling” higher 

than 43,500 documents. This finding reflects the importance of deciders makers to supervise the 

phenomenon to limit damages. A bibliometric analysis should be necessary to visualize the most 

published authors, concerned countries… (Cuéllar-Rojas et al., 2022; N’diaye et al., 2022; Alsadi et 

al., 2024; Hammouti et al., 2025). The analysis was limited from 2018 to 2024 to get <20,000 

documents to apply VOS viewer mapping. Figure 1 indicates the increase of articles with time to reach 

over 3000 articles in 2024. All parts of the world are concerned by the rainfall last time due to climate 

changes. China, the US, India, Australia, Iran, Brazil, France are mentioned by large nodes to indicate 

the preoccupation by the rainfall (Figure 2) and quantitively presented in Figure 3. In this studied 

period, some researchers are distinguished by their production to see Prof Shahid from Malaysia (>42 

papers) and has a total of 462 articles, H=75 and about 18,000 citations (Figure 4). But, during all 

years, Singh V.P. is the most published one (>1680 articles, H=111 and 62,700 citations). His article 

on drought concepts is the most published paper (>3900 times) (Mishra & Singh, (2010).  

 
Figure 1. Evolution of articles per year 

 
Figure 2. Countries preoccupied by the rainfall 
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Figure 3 Quantitative measure of the most countries suffering from the rainfall  

 
Figure 4 Prolife Authors  

The mapping obtained using VOS viewer confirms the importance of this field by the presence of 

numerous of nodes at different colors forming clusters showing the collaboration between researchers 

and institutions and their countries (Salim et al., 2022; Lrhoul et al., 2023; Mehta N., Kozielska, 2024). 

 
Figure 5. Author’s mapping and coworking on VOS viewer  
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        In Benin, since the availability of DSD data measured in Northwest Benin from 2005 to 2007, no 

study has focused on analyzing and modeling the erosive power of a rainfall event using these DSD 

data. A recent study by ADJIKPE et al. (2021) based on these DSD data only established estimators of 

the kinetic energy of raindrops from measurable hydrological variables: rainfall intensity and radar 

reflectivity factor under Rayleigh conditions. The purpose of the present study is to: (i) analyze the 

erosive power of precipitation and identify types of rainfall events responsible for erosive risk; (ii) 

develop two models Rj-KEj and Rj-Ij to estimate the erosivity factor Rj from total kinetic energy KEj 

and the intensity Ij of a potentially erosive rainfall event j. This article is organized as follows: after the 

introduction, the first part describes the study area and the data used; the second part is dedicated to 

the methodology used, and the third part presents the results followed by discussions. 

 

2. Methodology 

2.1-Experiments  

      Three optical disdrometers single-beam and dual-beam (Salle et al., 1998; Löffler-Mang and Joss 

,2000; Delahaye et al., 2005) were installed at three sites chosen in the northwest of Benin, specifically 

in Nangatchiori, Djougou, and Copargo, from 2005 to 2007 (Moumouni et al., 2008). These sensors 

sampled 1-minute DSD spectra. A dataset composed of 11.647 DSD spectra of rain intensities greater 

than or equal to 0.1 mm•h−1 divided into 93 rain events of duration at least equal to 15 min with an 

intermittency of less than 30 min (Moumouni et al., 2023) is thus constituted. These DSD data have 

been extensively validated by several studies [Gosset et al. (2010), Kougbéagbédé et al. (2017), 

Moumouni et al. (2008, 2018, 2021, 2023), and ADJIKPE et al. (2021)]. These rainfall events are either 

erosive or non-erosive. According to Wischmeier and Smith (1978), a rainfall event is considered 

erosive if the corresponding rainfall height is greater than 12.7 mm and the minimum inter-event time 

(MIT) is greater than 6 h, except for rainfall events whose height reaches 6.35 mm in 15 min. Several 

years later, the work of Dunkerley (2008, 2010) qualified this threshold as arbitrary, given that the 

number and properties of rainfall events (mean duration, height, mean rainfall rate, mean inter-event 

time, intra-event variability, rainfall peak, etc.) change both in time and space with the selected MIT.  

      In this study, we considered potentially erosive rainfall events to be events lasting at least 15 min 

with an intermittency of less than 30 min and whose cumulative height of precipitated water is greater 

than 12.7 min. This height threshold is chosen for the same reasons as Wischméier and Smith (1978). 

Thus, out of the 93 rainfall events, 38 were identified as potentially erosive and constitute the DATA 

X sample. If these rainfall events are of long duration, the presence of gaps between the spectra can 

significantly modify the average rainfall intensity (Huff, 1967). This is why, for the reliability and 

relevance of the calculation of the values of the average rainfall intensities, we extracted from the 

DATA X sample those whose spectra are recorded with the fewest possible gaps (i.e. the duration in 

minutes of the rainfall event corresponds to the number of 1-minute spectra recorded to within a few 

minutes). A new sample composed of 17 erosive rainfall events with quasi-continuous recording of 

rain DSD spectra called DATA Y is then created and used for modeling. 

 

2.2 - Analysis of the Erosive Power of Rain 

        To analyze the erosive power of the rainfall events in our dataset, we first identified the erosive 

rainfall events by site according to the criteria described in section 1.2.2. Secondly, we evaluated the 

contribution of these erosive rainfall events to the aggressiveness of the rain in our study area. 
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Furthermore, hydrological variables, specifically maximum intensity (Imax), event total (Het), and the 

total kinetic energy of the potentially erosive rainfall events were analyzed and compared to those of 

all rainfall events. Thus, the rainfall events responsible for the soil erosion risk are identified. 

2.3- Modeling the Erosivity Factor of an Erosive Rainfall Event 

 Since the pioneering work of Wischmeier and Smith (1978), who calculated the erosivity factor of rain 

in the absence of data on the diameter and fall velocity of raindrops using the following formula (1):                     

                               Rj  = aKEj . (I30,max)j                                                                                                 (1) 

où Rj, (I30,max)j  et (KE)j   Rj  = aKEj . (I30,max)j  represent the erosivity factor, the maximum intensity over 

30 minutes, and the total kinetic energy of a rainfall event ( j ); ( a ) is a multiplication factor related to 

the chosen unit system (where ( a = 1/87.6 ) when  Rj is expressed in MJ.mm.ha⁻¹.an⁻¹.h⁻¹). However, 

the lack of data on the parameters (KEj and  I30,max has led some researchers to establish relationships 

between kinetic energy (KE) and rainfall intensity (I) and simple models relating the erosivity factor to 

rainfall amount over different time intervals (daily, monthly, annually) (see Table 1 and Table 2). 

Table 1: Some KE-I models developed in various studies: 

       Reference                                       Form of model               Equation                         Location                       

 Steiner and Smith (2000)                                                                Mississippi (USA) 

ADJIKPE et al. (2021)                                                                                                Northen of Benin 

Jan Pétru (2018)                                   Power law                    KE = aIb                      Czech Republic  

Nan Yu (2012)                                                                  South of France                               

McGregor et al. (1995) 

Brown and Foster (1987)              Exponential model     KE= a[1-bexp(-λI)             Hong Kong, USA                                                         

Wischmeier et Smith (1978)          Logarithmic model         KE = α+βlog10I           North of America                                                                                                                                     

Hudson (1961)                                     Linear model               KE = a(I-b)               Zimbabwe (Africa)  

 

Table 2: Some erosivity factor (R) models developed in various studies: 

       Reference                                    Model R                  Parameters                                   Location 

Renard and Freimund (1994)       R= a1P
b1                 a1,b1,a2,b2,c: nonlinear                             USA 

                                                        R= a2+b2P
c         regression parameters 

Richardson et al. (1983)          Rd = α1𝑃𝑑
β1               α1, β1: nonlinear regression             Morocco        

                                                                                         parameters. Pd: daily rainfall 

Arnoldus (1977)                      R= a3F
b3                   a3,b3,a2,b2,c: linear regression 

                                                       F= 
∑ 𝑃𝑖,𝑚𝑎𝑥

212
𝑖=1

𝑃
             parameters. Pi,max : monthly              Morocco      

                                                                                         Rainfall ; P : yearly rainfall 

Roose E. (1977)                             R = α+βP                α, β: linear regression                  West Africa 

                                                                                           parameters. P : rainfall                Countries                                                                                                                           

These models (Tables 1 and 2) have been applied in several studies across many countries worldwide 

(Xie Y. et al., 2016; Vantas K. et al., 2018; Abadi M. et al., 2016; etc.) and particularly in Africa, 

notably in Nigeria (Igwe et al., 1999; Salako F., 2010) and South Africa (Smithern et al., 1982). 

However, most of these models were established based on rainfall data. In this study, the (KE) 
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parameter is determined based on disdrometric data using the formula (2) demonstrated in a recent 

study conducted by ADJIKPE et al. (2021): 

 KEj [𝐽. 𝑚−2ℎ−1] = 
3𝜋

104
∑ 𝐷𝑖

3[𝑉𝑡(𝐷𝑖)]3𝑛
𝑖=1 𝑁(𝐷𝑖)𝛥𝐷𝑖                                                                    (2)  

 where (N(𝐷𝑖) ) denotes the number of raindrops per unit volume and per diameter interval. It represents 

the analytical function commonly used to analyze the Drop Size Distribution (DSD) by several authors 

such as Sauvageot and Lacaux (1995), Ulbrich and Atlas (1998), Moumouni et al. (2008), Tenorio et 

al. (2012), etc. It is calculated as follows: 

       𝑁(𝐷𝑖) =
𝑁𝑖

𝑆𝑇∆𝐷𝑖𝑉𝑡(𝐷𝑖)
                                                                                                                             (3) 

𝐷𝑖 is the equivalent diameter of the measured raindrops. (∆𝐷𝑖) is the width of the diameter interval 

centered on ( 𝐷𝑖 ). In this study, ( 𝐷𝑖 ) and (∆𝐷𝑖) are expressed in millimeters. (S) is the collection surface 

area of the disdrometer expressed in square meters. At the end of the duration (T), (𝑁𝑖) is the number 

of drops counted by the disdrometer in each diameter interval. (𝑉(𝐷𝑖)) is the fall velocity of drops with 

diameter ( 𝐷𝑖 ). To ensure that the rainfall rate is proportional to a moment of the function (N(D)), the 

drop fall velocity proposed by Atlas and Ulbrich (1977) is used: 

                           Vt(Di) = 3.78Di
0.67[m ∙ s−1]                                                                                        (4) 

In all the aforementioned studies, 𝑇 = 1𝑚𝑖𝑛 = 60𝑠 and 𝑁(𝐷𝑖)  expressed in [𝑚−3𝑚𝑚−1]. The rainfall 

intensity (I) is the volume of water that falls per unit area and per unit time, and it is calculated in 

ADJIKPE et al. (2021) using the following formula:                       

                          𝐼[𝑚𝑚. ℎ−1] =
6𝜋

104
∑ 𝐷𝑖

3𝑉𝑡(𝐷𝑖)
𝑛
𝑘=1 𝑁(𝐷𝑖)𝛥𝐷𝑖                                                              (5) 

The rainfall amount for each spectrum of an erosive rainfall event were calculated using formula (5). 

Since a significant portion of precipitation typically occurs within a small fraction of its duration, 

ranging from 5 minutes, 10 minutes, 15 minutes, 30 minutes to 60 minutes (Capolongo et al., 2008; 

Cattan et al., 2008; Fang et al., 2012), the maximum intensity over 30 minutes for each erosive rainfall 

event in the DATA Y sample is the maximum value of the rainfall intensities for all the DSD spectra 

of the erosive rainfall event. A model Rj-KEj is established through linear regression of the erosivity 

factor ( Rj ), calculated using formula (1), on the total kinetic energy ( KEj ), calculated using formula 

(2), for each erosive rainfall event (j). This model, in the form of a power law (Rj = aKEj
b), where (a) 

and (b) are respectively the prefactor and the exponent, serves as an estimator for the erosivity factor ( 

Rj ) of an erosive rainfall event (j) based on its kinetic  energy ( KEj ). This parameter is also derived 

using the same method through a (KEj-Ij) model. By combining the two models ( Rj-KEj) and ( KEj-

Ij), another model ( Rj-Ij) is obtained to estimate the erosivity factor (Rj) from the average intensity (Ij) 

of an erosive rainfall event (j). 

2.4- Evaluation of the Performance of the (Rj-KEj) and ( Rj-Ij) Models 

The evaluation of the performance of the models is conducted through the statistical criteria defined in 

Table 3. A model is considered effective if the correlation coefficient and the Nash efficiency criteria 

as well as the KGE (Kling-Gupta Efficiency) approach 1, while the relative bias approaches zero. All 

modeling is based on the DATA Y sample, and the ability of the constructed models to reproduce the 

erosivity factor of any erosive rainfall event is assessed using the erosive rainfall events from the 

DATA X sample. 
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Table 3: Statistical Criteria for Comparison 

N° Statistical Criteria Expression 

1 Pearson correlation coefficient 
𝜌 =

𝐸[(𝑌𝑜𝑏𝑠 − 𝐸[𝑌𝑜𝑏𝑠])(𝑌𝑒𝑠𝑡 − 𝐸[𝑌𝑒𝑠𝑡])]

𝜎𝑜𝑏𝑠𝜎𝑒𝑠𝑡
 

2 Nash efficiency criteria (Nash et 

Sutchiffe, 1970) 
𝑁𝑎𝑠ℎ = 1 −

𝐸[(𝑌𝑒𝑠𝑡 − 𝑌𝑜𝑏𝑠)2]

𝐸
 

3 Kling-Gupta efficiency criteria 

(Gupta et al., 2009) 𝐾𝐺 = 1 − √(𝜌 − 1)2 + (
𝜎𝑒𝑠𝑡

𝜎𝑜𝑏𝑠
− 1)2 + (

𝐸[𝑌𝑒𝑠𝑡]

𝐸[𝑌𝑜𝑏𝑠] − 1)2
 

3 relative bias 
𝐵𝑖𝑎𝑠 = ∑ [

(𝑌𝑒𝑠𝑡 − 𝑌𝑜𝑏𝑠)

𝑌𝑜𝑏𝑠
] 

3. Results and Discussion 

3.1- Analysis of the Erosive Power of Precipitation 

Figures 6, 7 and 8 illustrate the distribution of rainfall events by site, as well as their cumulative 

heights and total kinetic energies. 

 

Figure 6: Distribution of Rainfall Events by Sit 

This histogram shows that the highest percentage of erosive rainfall events (70%) occurred in 2005 

at the Nangatchiori site, while the lowest (37%) was in 2007 at the Djougou site. Overall, the 38 

identified erosive rainfall events represent 40.86% of the 93 measured events across the three sites 

in northern Benin. 

Nangatchiori
(2005)

Djougou (2006) Copargo (2006) Djougou (2007)

All events 10 14 27 42

Erosives events 7 8 10 13

Percentage 0,7 0,5714 0,3095 0,3704
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Figure 7: Distribution of Cumulative Rainfall Heights by Site 

 

In 2006, the cumulative heights of erosive rainfall events at the Djougou site accounted for 82.50% 

of all events measured at that site, the highest percentage recorded. The lowest percentage (66%) of 

cumulative heights was in 2006 at Copargo. In total, 71.29% of the cumulative heights from all 

measured events from 2005 to 2007 came from the 40.86% of potentially erosive rainfall events. 

 

Figure 8: Distribution of Total Kinetic Energies of Rainfall Events by Site 

 

The histograms in Figure 8 show that the greatest percentage of total kinetic energy from erosive rain 

events is obtained at the Nangatchiori site in 2005 while the lowest percentage (63%) of total kinetic 

energy from erosive rain events was registered in 2006 on the Copargo website. Thus, erosive rain 

events which represent only 40.86% of all rain events sampled produced an overall percentage 
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of 76.65% of total kinetic energy. The histograms in Figures 6, 7 and 8 therefore allow us to deduce 

that 71.23% of the cumulative rainfall amounts and 76.65% of the total kinetic energy of all rain events 

comes from 40.86% of rain events identified as potentially erosive. In addition, the histograms in 

Figure 5 below present a comparison of the cumulative heights, maximum intensity and total kinetic 

energy of erosive rain events compared to all measured rain events. 

 

 
Figure n°9(a): Comparison of maximum intensities of rain events of erosive rain events to 

Those of all rain events  

 
Figure n°9(b): Comparison of Total heights for each event of erosive rain events to those of all 

rain events 
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Figure n°9(c): Comparison of Total kinetic energies of each rain event of erosive rain events to 

those of all rain events. 

 

On the histograms (a), (b) and (c) of Figure 9, we see that erosive rain events have the greatest 

accumulations of rain depth, maximum intensity and maximum kinetic energy. From the results of 

Figures 6, 7, 8, 9, it appears that erosive rainy events have great erosive power and are responsible for 

most of the erosive risks linked to Precipitation. 

 

3.2 - Modeling the Erosivity Factor of Erosive Rainfall Events 

Using the DATA X sample, the erosivity factor ( Rj ) of an erosive rainfall event (j) is calculated using 

Formula (1), while the total kinetic energy of the erosive rainfall events is determined using Formula 

(2). The model (Rj-KEj), which establishes the relationship between the erosivity factor and total 

kinetic energy, is derived through a linear regression of ( Rj ) on the total kinetic energy ( KEj ) for 

each erosive rainfall event (j). Figure 10 shows the results of this regression. 

 

Figure n°10: Sample DATA Y: graph (aa): Adjustment of the erosive factor Rj on the total kinetic 

energy KEj of erosive rain events; graph (bb): comparison of the erosivity factors measured and 

estimated using the DATA X sample; the black line represents the first bisector.  
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The Rj-KEj model thus established between the erosive factor Rj and the total kinetic energy KEj of 

an erosive rainy event j is: 

                      Rj = 0.00369KEj
1.518                                                                                            (7) 

The Pearson correlation coefficient calculated between the erosivity factors measured and estimated 

by model (7) gives ρ = 99.4% (see graph (aa)). This coefficient tending towards 100% shows that 

the adjustment is of good quality. Likewise, we note a good distribution of the cloud of erosivity 

factors around the first bisector (graph bb) with Nash and KGE efficiency criteria calculated 

between the measured and estimated values of 96.9% and 98.1% respectively. These values also 

tend towards 1 and the relative bias is 0.6%. Which allows us to conclude that this model is effective 

in estimating the erosive factor of any erosive rainy event. The interest of this model lies in the fact 

that it makes it possible to directly estimate the erosive factor of an erosive rainy event from its total 

kinetic energy which is a quantity directly measurable today by certain sensors latest generation. 

When the kinetic energy is not available, it can be deduced from the rain intensity which is often 

available through a relationship between the kinetic energy KEj and the rain intensity Ij of an erosive 

rain event j established by linear regression. Figure 11 below shows the result of this regression. 

 
Figure 11: KEj-Ij relationship established by linear regression of the erosivity factors Rj  

on the intensities Ij of the erosive rain events j of the DATA Y sample  

 

The relationship thus obtained is:         

                                  KEj = 6.01Ij
1.191                                                                                                                                             (8) 

The relationship (8) thus established between the total kinetic energy KEj and the average intensity Ij 

of an erosive rain event j is different from those obtained by ADJIKPE et al. (2021) on the same data. 

This difference is justified by the fact that these KE-I relationships were obtained at different 

integration time steps between the kinetic energy of a DSD spectrum and its intensity I. The capacity 

of relation (8) to reproduce the total kinetic energy of an erosive rain event is analyzed on the DATA 

X sample. Table no. 4 below shows the results of the statistical criteria calculated between the measured 

kinetic energies and estimated by the relation KEj-Ij. 

 

Table n°4: Performance of the KEj - Ij relationship 

Estimator 𝜌 Nash KGE Bias 

KEj - Ij 0.9952 0.9796 0.9009 0.0495 
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Table n°4 shows that the values of the correlation coefficient and the Nash and KGE efficiency criteria 

calculated between the measured and estimated total kinetic energies (relation 8) tend towards 1 while 

the relative bias tends towards 0. Which proves that relation (8) can effectively estimate the total kinetic 

energy KEj of any erosive rain event j. By introducing relation (8) into model (7) we obtain: 

                Rj = 0.0561Ij
1.808                                                                                                                                              (9) 

The adjustment of the erosivity factors Rj on the intensities Ij of the different erosive rainy events j is 

of very good quality as indicated on the graph in figure (8) with the values estimated by the Rj-Ij model 

very well correlated with the measured values (ρ=98.8%) as shown in figure 12. 

 

Figure 12: Model Rj-Ij established by linear regression of the erosivity factors Rj on the rain intensities 

Ij of the erosive rain events j of the DATA sample Y 

 

3.3- Evaluation of the performance of the two models Rj-KEj and Rj-Ij  

To evaluate the ability of these models to estimate the erosivity factor of an erosive rain event, three 

criteria: the correlation coefficient, the Nash efficiency criterion and the relative bias are calculated 

between the measured and estimated erosivity factors. by the Rj-KEj and Rj-Ij models. The graphs in 

Figures 13 present the results obtained. 

 

 

Figures 13: DATA X: Performance of models Rj-KEj and Rj-Ij; (i) the correlation 

coefficient; (ii) the Nash efficiency criterion; (iii) the relative bias 
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The graphs in figures 13 above show that the correlation coefficient and the Nash efficiency criterion 

calculated between the erosivity factors measured and estimated by the Rj-KEj and Rj-Ij models tend 

towards 1; the lowest values of these two criteria are respectively greater than 80% and 70% while the 

relative bias on each measurement generally tends towards zero. The largest bias value is less than 5%. 

Furthermore, we note a downward trend in the Nash efficiency criteria and an upward trend in the 

relative bias when the erosive rain event has holes and this trend increases as the number of holes 

increases. between the spectra increase. These results, which highlight the influence of periods without 

rain on the criteria, show that the effectiveness of the model decreases depending on the duration 

without rain within the erosive rain event. To our knowledge, there are no bibliographic references on 

the Rj-KEj and Rj-Ij models, allowing us to make a comparison. In any case, these two models are 

efficient and make it possible to estimate the erosive factor of any erosive rain event with good 

precision. 
 

Conclusion 

This work made it possible to understand that the erosive risk linked to precipitation is essentially due 

to potentially erosive rainy events. The latter, characterized by peaks of cumulative heights, maximum 

intensity and total kinetic energy, are then endowed with the greatest erosive powers which are 

reflected through the value of the rain erosivity factor or index. In this study, two models Rj-KEj and 

Rj-Ij were established to estimate this quantity from data on the total kinetic energy (data provided 

today by numerous sophisticated sensors of the latest generation) or data on the rain intensity (data 

provided by most sensors). From the study of the efficiency and fidelity of these models, it appears that 

these models are efficient and can reproduce the erosivity factor of rain with good precision. This work 

also proved that the performance of these models decreases as the duration of the dry period within 

each erosive rain event increases. 
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