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1. Introduction 

Emerging contaminants (ECs) are those compounds found in wastewater in low concentrations as a 

consequence of the new habits of consume developed in our society. The discharge limitations of these 

compounds are not completely or not at all regulated, which can result in real hazards to the human 

health and environment [1, 2]. Among the compounds considered as ECs includes many different 

substances such as, pharmaceutical and personal care products, food additives, plasticizers, pesticides, 

etc. [3].  Pharmaceuticals are a group of chemical compounds substances that have medicinal properties, 

and unfortunately represent a significant category of microcontaminants emerging in aqueous 

environments from point and diffuse sources.                                                                                             

Pharmaceuticals detected in surface waters are antibiotics, anticonvulsants, painkillers, cytostatic drugs, 

hormones, lipid regulators, b-blockers, antihistamines, and the diagnostic X-ray contrast medium 

amidotrizoic acid, whose concentrations range from ng L-1 to mg L-1 in wastewater treatment plant 

effluents and surface waters [4]. Their low concentration makes their detection and elimination in 

conventional water treatment plants very difficult [5]. The several possible sources and routes for the 

occurrence of pharmaceuticals in aquatic environments are summarized in Figure 1 [6].     

During a treatment period, the pharmaceuticals are excreted from patient’s body either unchanged or in 

the form of derivatives or metabolites and are incorporated in wastewaters [7]. The presence of 

pharmaceuticals in the environment can lead to disruption of physiological processes and the 

reproductive function of living organisms. Note that the development of antibiotic-resistant bacteria 
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strains could cause that the drug metabolites can act as catalysts for undesirable environmental processes 

[8]. The development of antibiotic resistance has led to a reduction in the number of effective antibiotics 

available to treat human’s infectious diseases and, consequently, the World Health Organization (WHO) 

has identified the antibiotic resistance as a global threat to humanity [9]. Therefore, it is important to 

take action against the pharmaceutical products pollution of the environment [10; 11].                                                                                                                                  
                     

 
 

Figure 1: Potential routes for human and animal pharmaceutical products to contaminate aquatic environment [6]  
 

Several methods have been applied for treatment of pharmaceutical products like photocatalytic 

degradation [12-19], micro extraction [20-24], oxidation [25-28], biodegradation [29-32], chlorination 

[33- 37], biofiltration [38-40], nanofiltration and reverse osmosis [41-43], electrochemical oxidation 

[44-47], and adsorption [48-60]. Adsorption is a well-known equilibrium separation process and an 

effective method for water decontamination applications [61-68]. Adsorption has been found to be 

superior to other techniques for water re-use in terms of initial cost, flexibility and simplicity of design, 

ease of operation and insensitivity to toxic pollutants. Adsorption also does not result in the formation 

of harmful substances. 

The aim of this short review paper was to describe the modeling of adsorption isotherms of 

pharmaceutical products from aqueous solutions by various adsorbents. The objective is not an 

exhaustive review of all the types of adsorbents used, but to focus onto activated carbons, clays and 

agricultural solid wastes. The reader is strongly encouraged to refer to the original research papers for 

information on experimental conditions and others.                                                                                    

                                                                                

2. Modeling of adsorption isotherms                                                                                                        

Adsorption isotherms describe the relationship between the equilibrium concentration of the adsorbed 

matter in the solution and the amount of adsorbed matter on the surface of the adsorbent. Adsorption 

equilibrium is established when an adsorbate containing phase has been contacted with the adsorbent for 

sufficient time, with its adsorbate concentration in the bulk solution is in a dynamic balance with the 

interface concentration [69].  Several isotherm models such as Langmuir, Freundlich, Temkin, Dubinin– 

Radushkevich, Sips, Toth and Redlich-Peterson are described in this present short review article: 
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Langmuir isotherm. Langmuir isotherm model assumes monolayer adsorption onto a surface containing 

a finite number of adsorption sites of uniform strategies of adsorption with no transmigration of 

adsorbate in the plane of surface [70].    

                                                                          

Freundlich isotherm. Freundlich isotherm is applicable to adsorption processes that occur on 

heterogonous surfaces. This isotherm gives an expression which defines the surface heterogeneity and 

the exponential distribution of active sites and their energies [70].   

                                                           

Temkin Isotherm. Temkin isotherm model takes into account the effects of indirect adsorbate/adsorbate 

interactions on the adsorption process; it is also assumed that the heat of adsorption (Δ𝐻ads) of all 

molecules in the layer decreases linearly as a result of increase surface coverage. The Temkin isotherm 

is valid only for an intermediate range of ion concentrations [71].      

                                                        

Dubinin-Radushkevich isotherm. Dubinin-Radushkevich model is the fact that it is temperature 

dependent; hence when adsorption data at different temperatures are plotted as a function of logarithm 

of amount adsorbed versus the square of potential energy [72].  

                                                                 

Sips isotherm. Sips isotherm is a combination of the Langmuir and Freundlich isotherms. This model is 

suitable for predicting adsorption on heterogeneous surfaces, thereby avoiding the limitation of increased 

adsorbate concentration normally associated with the Freundlich model. Therefore at low adsorbate 

concentration this model reduces to the Freundlich model, but at high concentration of adsorbate, it 

predicts the Langmuir model [73].    

                                                                                       

Toth isotherm. Toth isotherm model combines the characteristics of both the Langmuir and Freundlich 

isotherm. It approaches the Freundlich model at high concentration and is in agreement with the low 

concentration limit of the Langmuir equation model [74]. 

 

Redlich–Peterson isotherm. Redlich–Peterson isotherm model combines elements from both the 

Langmuir and Freundlich equation model and the mechanism of adsorption is a hybrid one and does not 

follow ideal monolayer adsorption. It is used as a compromise to improve the fit by Langmuir or 

Freundlich equation model [74].                                                                                                                             

 

3. Removal of pharmaceutical products by activated carbons 

Efforts have been made by many scientists to propose alternative carbon source for producing activated 

carbons at lower costs. Activated carbons are generally manufactured by pyrolysis of biomass [75], 

under inert atmosphere. The activation may be chemical or physical.                                 

Çalışkan & Göktürk [76] studied the removal of sulfamethoxazole and metronidazole onto activated 

carbon from aqueous solutions. Adsorption isotherms have been modeled by Freundlich, Langmuir, and 

Dubinin- Raduskevitch models. The adsorption of these drugs was better represented by the Langmuir 

model. Maximum adsorption capacities of sulfamethoxazole and metronidazole were found to be 185.19 

and 144.93 mg g-1 respectively. Baccar et al. [77] investigated the adsorption of naproxen, diclofenac, 

ibuprofen, and ketoprofen on activated carbon prepared from olive-waste cakes. The results showed that 

the Langmuir model provided the best fit with a monolayer adsorption for the four considered 

pharmaceuticals. Maximum adsorption capacities of Naproxen Ketoprofen, Diclofenac and ibuprofen 

were found to be 39.5, 24.7, 56.2 and 12.6 mg g-1 respectively. Ferreira et al. [78] studied the adsorption 
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of paracetamol using activated carbon of Dende and Babassu Coconut Mesocarp. Equilibrium data may 

be represented by Langmuir model with the monolayer adsorption capacities were found to be 70.62 and 

71.39 mg g-1 at activated carbon originated from dende coconut mesocarp and babassu coconut 

mesocarp, respectively. Mukoko et al. [79] studied the adsorption of aspirin, paracetamol and ibuprofen 

from hospital effluent using activated carbon prepared from rice hull. The Langmuir model showed best 

fit for ibuprofen and paracetamol adsorption onto activated carbon. The Freundlich model showed best 

fit for aspirin adsorption onto activated carbon. Maximum adsorption capacities of aspirin, paracetamol 

and ibuprofen were found to be 178.89, 169.49 and 100 mg g-1 respectively. Miao et al. [80] studied the 

adsorption of cephalexin from effluent by activated carbons produced from alligator weed by phosphoric 

acid activation. The Langmuir isotherm gave the best fitted with the experimental data at 308 K and the 

monolayer adsorption capacities were found to be 38, 40 and 45 mg g-1 at 288, 298 and 308 K, 

respectively. Marzbali et al. [81] studied Tetracycline batch adsorption in a synthesized aqueous solution 

using activated carbon prepared from apricot shell. Adsorption isotherms were investigated, and it was 

shown that the Freundlich model was the best fit for the adsorption equilibrium data. The maximum 

adsorption capacity of Tetracycline onto activated carbon was 308.33 mg g−1. Nazari et al. [82] 

investigated the batch adsorption experiments for the adsorption of cephalexin antibiotic on walnut shell 

activated carbon prepared by chemical activation in the presence of ZnCl2. The adsorption isotherm was 

analyzed by different isotherm models. It was found that the Freundlich and Toth models provided the 

best fit for the experimental data. The maximum adsorption capacity was obtained 233.1 mg g-1 based 

on the Langmuir model. Boudrahem et al. [83] investigated the feasibility of the preparation of activated 

carbon cloths from waste textiles for the removal of clofibric acid, tetracycline and paracetamol. The 

equilibrium data for the adsorption of pharmaceuticals compounds onto activated carbon cloths were 

analyzed by testing different models. The results showed that the Langmuir model provided a good 

description of the experimental isotherms for tetracycline and paracetamol, whereas clofibric acid 

isotherm rather follows the Freundlich model. On the basis of the Langmuir analysis, the maximum 

adsorption capacities were determined to be 109 and 105 mg g−1 for tetracycline and paracetamol, 

respectively. Beltrane et al. [84] prepared activated carbon fibers from pineapple plant leaves which was 

used the adsorption of caffeine onto its surface. It was found that the Langmuir isotherm models were 

best fitted to the experimental data and the monolayer adsorption capacity was found to be 155.50 mg 

g−1. Wong et al. [85] reported conversion of spent tea leaves to activated carbon for removal of 

acetaminophen (paracetamol) from simulated wastewater. The adsorption data were well fitted to the 

Langmuir isotherm model. The adsorption capacity of activated carbon derived spent tea leaves towards 

acetaminophen was found to be 59.2 mg g-1. Paredes- Laverde et al. [86] prepared activated carbons 

from rice husk and coffee husk for the removal of acetaminophen in both distilled water and synthetic 

urine. The adsorption process showed a well-fit to the Redlich-Peterson isotherm. β values of 

approximately 1, indicated that the process resembles Langmuir, and suggests a homogeneous 

adsorption process. These results presented above showed that the excellent ability and economic 

promise of the activated carbons prepared from biomass exhibited high sorption properties.                    

                                                                                  

4. Removal of pharmaceutical products by clays                                                                                   

Clays are abundantly available and hence low cost [87]. Well-known classes of clays include illite, 

serpentine, diatomite, montmorillonite, saponite, bentonite, kaolinite, pylophyllite, Fuller's earth, 

sepiolite and vermiculite [88]. A relatively good removal capability of clays to uptake pharmaceutical 

products has bee demonstrated by many researchers. Montmorillonite KSF was used by Bekci et al. [89] 

for removal of trimethoprin under different conditions (pH, ionic strength, temperature). The adsorption 
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data could be fitted with Freundlich, Langmuir and Dubinin-Radushkevich equation models to find the 

characteristic parameters of each model. It was found that linear form of Langmuir isotherm seems to 

produce a better model than linear form of Freundlich equation model. From the Langmuir and 

Freundlich models, the adsorption capacity values raised as the solution temperature decreased. From 

Dubinin–Radushkevich isotherm, it was also determined that the type of adsorption can be considered 

as ion-exchange mechanism.  Bekci et al. [90] studied the adsorption of trimethoprim onto K10 

montmorillonite using batch technique under different pH and temperature. The adsorption of 

trimethoprim has been described by using Langmuir, Freundlich and Dubinin–Radushkevich equation 

models to obtain adsorption capacity values. The results indicated that the relative adsorption capacity 

values (KF) are decreasing with the increase of temperature in the range of 298– 318 K. The adsorption 

energy values obtained from Dubinin–Radushkevich isotherm showed that adsorption of trimethoprim 

onto K10 can be explained by ion exchange mechanism at 298, 308 and 318 K. Fukahori et al. [91] 

studied the adsorptive removal of five sulfa drugs (sulfathiazole, sulfamerazine, sulfamethizole, 

sulfadimidine and sulfamethoxazole) from an aqueous solution using a high-silica zeolite. Langmuir and 

Freundlich models were applied to the experimental data obtained under various pH conditions. The 

experimental data fit better to the Langmuir model compared to the Freundlich model, thus a pH-

dependent adsorption model based on the Langmuir isotherm. Thiebault et al. [92] studied the adsorption 

of tramadol and doxepin on sodium exchanged smectite. The adsorption isotherms for both temperatures 

of 20 and 40 °C and the derived data determined through the fitting procedure by using Langmuir, 

Freundlich and Dubinin– Radushkevich equation models explicitly pointed out that the adsorption of 

both tramadol and doxepin is mainly driven by electrostatic interaction. Sharipova et al. [93] studied the 

adsorption of model systems of triclosan by mineral sorbent diatomite. Adsorption isotherms were 

analyzed according to the linear/nonlinear form of Langmuir, Freundlich, Sips and Toth isotherm 

models. The results showed that nonlinear Langmuir and Sips isotherm models provided suitable fitting 

results and no pronounced difference in adsorption efficiency between isotherms measured after 1, 2 and 

3 days adsorption was observed. Maximum adsorption capacity of diatomite towards triclosan qs is 140 

mg g-1. Fuad et al. [94] reported on the removal of ibuprofen, diclofenac sodium, indomethacin, 

chlorpheniramine maleate, and paracetamol from water using the natural Jordanian zeolite as an 

adsorbent. Langmuir and Freundlich isotherm models were used to evaluate the adsorption efficiencies 

of the investigated pharmaceuticals. The results showed that Langmuir isotherm fits the experimental 

data for diclofenac sodium, indomethacin and paracetamol with adsorption capacity of 4.8, 26.6 and 

55.6 mg g-1, respectively, whereas Freundlich isotherm fits the experimental data for both ibuprofen and 

chlorpheniramine maleate. Del Mar Orta et al. [95] studied the potential use of the smectite clay mineral 

montmorillonite as adsorbent in the removal of water containing the propranolol. Propranolol adsorption 

onto Montmorillonite was well described by the Freundlich and Dubinin- Radushkevitch models, being 

the ionic exchange between charged propranolol and inorganic cations in the free sites the most favorable 

pathway. Additionally, the variable pH presented a low influence in the range of 1 to 9. The results 

presented above show that clay materials may be promising adsorbents from environmental and 

purification point of views.                                                                                           

                     

5. Removal of pharmaceutical products by agricultural solid wastes 

Agricultural waste materials have little or no economic value and often pose a disposal problem [96].  

The raw agricultural solid wastes such as leaves, seeds etc. and waste materials from forest residues have 

been used as adsorbents. These materials are available in large quantities and may be potential adsorbents 

due to their physico-chemical characteristics and low cost [97].                                                                                                         
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The work of Araujo et al. [98] described the removal of Diclofenac in batch experiments from an 

aqueous environment using adsorption onto Moringa Oleifera seed husk biomass. The adsorption 

equilibrium data better fit the Freundlich model. Paredes-Laverde et al. [99] studied the removal of the 

widely used antibiotic norfloxacin using rice and coffee husk wastes as adsorbents. The equilibrium 

adsorption data were analyzed using Langmuir, Freundlich and Redlich-Peterson isotherms. The best   

fit for the Langmuir and Redlich-Peterson isotherms suggested a monolayer-type adsorption model. 

N’diaye and Kankou [100] used Balanites aegyptiaca seeds as a low cost adsorbent for adsorption of 

caffeine from aqueous solution. Batch sorption experiments are intended to identify the adsorption 

isotherms of the caffeine on the Balanites aegyptiaca seeds. Four isotherm models (Freundlich, 

Langmuir, Redlich–Peterson and Sips) were tested for modeling the adsorption isotherms by nonlinear 

method. The maximum adsorption capacity was found to be 4.28 mg g-1. A Zizyphus mauritiana seed as 

adsorbent was investigated by N’diaye and Kankou [101] for the removal of caffeine from aqueous 

solution. Equilibrium isotherms were determined and analyzed by nonlinear method using the Langmuir, 

Freundlich, Temkin, Sips, Redlich – Peterson and Toth isotherms. The results showed that the Langmuir 

isotherm model were best fitted to experimental data and the monolayer maximum adsorption capacity 

was found to be 2.38 mg g-1. N’diaye et al. [102] studied the adsorption of paracetamol on groundnut 

shell as low cost adsorbent using the batch equilibrium method. The experimental data were fitted to the 

Langmuir, Freundlich, Temkin, Sips, Redlich – Peterson and Toth. The Langmuir better described the 

isotherm data. The retention of paracetamol on the groundnut shell showed a relatively significant 

adsorption with a maximal quantity of 3.02 mg g-1. The results presented above showed the potential 

application of agricultural wastes as low-cost alternative for the removal of pharmaceutical products 

which are in good agreement and widely discussed in literature [103-105].                                                                                                                              

 
Conclusion 

This short review is devoted to the adsorption of pharmaceutical products from aqueous solutions, which 

are chemical compounds that have been detected in the aquatic environment and belong to some of the 

most popular emerging pollutants that may cause serious environmental and human health   problems.                                                                                                                                                      

The modelings of adsorption isotherms of pharmaceutical products from aqueous solutions by various 

adsorbents have been reviewed. There are some conclusions from this short review as following:           

• The current short review highlights the enormous potential of biomass waste to be used as low cost 

adsorbent or as precursors for the synthesis of activated carbons for the adsorption of pharmaceutical 

products. 

• Literature also reveals that the equilibrium data fitted Langmuir isotherm in majority of cases and in 

few cases for Freundlich isotherm.  

Most of the reported studies are performed in the batch process; this gives a platform for the designing 

of the continuous flow systems with industrial applications at the commercial level also.                         
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