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1. Introduction 

The derivatives of Alizarin comprise an intriguing clan of Anthraquinone dyes and employed for the determination 

of molecules, metal ions and in textile industry [1-3]. Among them, (SAS) with molecular formula C14H7NaO7S 

(Figure 1) is widely employed in the textile industry as their broad range of colour shades (Yellow to Purple) and 

ease of application. Its usage involving the study of bone growth, bone marrow, calcium deposits in the vascular 

system, tissue engineering and gene expression. Its fused aromatic ring structures are the main reasons for its 

implicit non-biodegradable character and chemical stability. The presence of the sulfonate group in the molecule 

leads to extended reactivity in this molecule. Due to the extensive usage of this dye in dying industries produces 

numerous environmental problems. Identification of these dyes along with the quantification and removal from 

textile wastewaters is a challenging and expensive process [4-11].                       

The surfactant SDS is a kind of amphiphilic molecule with hydrophilic head on one side which is compatible with 

water and long hydrophobic tail compatible on the other side [12-16]. Surfactant has been extensively used in the 

electrochemical process owing to its ability to enhance the characteristics of the electrode/solution interface. 

Because of the adsorption of surfactant at the interface and aggregation into a supramolecular structure, it 

reinforces the properties of the electrode surface, enhances the reaction rate, as well as it enhances the peak current 

[17-19]. The drop-coating method of fabrication enriched with two main advantages: the modifier covers the 

entire surface of the electrode and minimum utilization of the modifier. Hence, this fabrication approach gets 

preference over other methods of fabrication [20-25].                                                      

Carbon nanotubes based electrochemical sensors depicts an excellent and compelling substitute for the analysis 

of various dyes. Because of the explicit features of CNTs, comprises of high thermal and chemical stability and 

unique mechanical properties made it widely adopted for the construction of electrodes [26-33]. CNT fabricated 
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electrodes have been witnessed to have admirable electroanalytical characteristics such as high sensitivities, wide 

potential range, low detection limit and resistance to surface fouling [34-39].                                                 

In the present work, we portray the fabrication of new electrode containing BCNTP modified with surfactant SDS 

and scrutinize its efficiency for the electrocatalytic determination of SAS in an aqueous buffer solution. This 

modified electrode was also used for the simultaneous determination of SAS and TZ. 

 

 
Figure 1: Structure of Sodium Alizarin Sulfonate. 

2. Material and Methods 
2.1. Apparatus and Chemicals 

The electrochemical analysis was performed with an electrochemical workstation of model CHI-6038E 

(CHInstruments, USA). It includes a three-electrode system with SDSMCNTPE as working electrode, Platinum 

electrode as an auxiliary electrode and calomel electrode as reference electrode used to get the electrochemical 

data. FESEM micrographs were obtained from DST PURSE Lab, Mangalore University.                                                                                                                                                                             

Analytical grade multiwalled carbon nanotubes (external diameter 30-50 nm and length 10-30 μm) were 

purchased from Sisco Research Laboratory Pvt. Ltd. Maharashtra, SAS, and TZ were procured from Molychem, 

Mumbai, India. Silicone oil was purchased from Nice Chemicals, Kerala, India. All reagents were used without 

further purification. Na2HPO4 and NaH2PO4 were obtained from Sigma-Aldrich. The phosphate buffer solution 

was used to prepare different pH solutions and was used as supporting electrolyte. Double distilled water was 

utilized for the preparation of all aqueous solutions.                  

2.2. Preparation of BCNTPE 

The homogeneous carbon nanotube paste was prepared by grinding 60% carbon nanotubes and 40% silicone oil 

using mortar and pestle. The prepared paste was then packed into the cavity (internal diameter 3 mm) of working 

electrode and the surface of the electrode was smoothened on the tissue paper.                                        

2.3. Preparation of SDSMCNTPE 

The SDSMCNTPE was prepared by the immobilization of 10 μl  SDS solution on the surface of the BCNTPE. 

After immobilization of the surfactant, the surface of the electrode was rinsed with distilled water. The copper 

wire was connected to the end of the tube to provide the electrical contact between the electrode and the 

electrolyte.                                                                                                                                                                  

3. Results and discussion 

3.1 Surface morphology of BCNTPE and SDSMCNTPE                                                                                            

The surface morphology of bare (BCNTPE), as well as the current modified electrode (SDSMCNTPE), was 

analyzed by widely used FESEM images. Irregularly structured nano-sized tubes were observed on the exterior 

of the BCNTPE (Fig. 2a), whereas on the superficial of SDSMCNTPE (Fig. 2b), the deposition of surfactant 

molecules was observed. These adsorbed surfactant molecules influenced to enhance the electrocatalytic activity 

of the electrode. 

3.2 Electrocatalytic response of SAS                                                                                                                         

The electrochemical activity of SDSMCNTPE was checked by studying the cyclic voltammograms obtained in 

the absence and presence of 2×10-4mol/L SAS in 0.2 M PBS of pH 6.5 in the potential window 0.4 to 1.1 V, and 

the graph obtained as shown in Figure 3. No characteristic peak was observed in the absence of SAS (curve b). 

When 2×10-4mol/L SAS was added to the electrolyte solution a characteristic oxidation peak was obtained at 

0.794 V with Ipa=53.26 μA (curve a).                                                                                                                     
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Figure 2: FESEM images of (a) BCNTPE (b)  SDSMCNTPE. 

 
Figure 3: Typical cyclic voltammograms of SDSMCNTPE with  2×10-4 M SAS in pH 6.5 PBS (curve a) and without 

containing 2×10-4 M SAS at pH 6.5 PBS (curve b). 

3.3 Electrocatalytic response of SAS at SDSMCNTPE                                                                                             

The electrocatalytic behavior of SAS (2×10-4mol/L) was investigated at BCNTPE and SDSMCNTPE using CV 

technique. The investigations were carried out in 0.2 M PBS of pH 6.5 as supporting electrolyte at a sweep rate 

0.1 V/s. As can be seen from the Figure 4 the BCNTPE (curve b) does not show response towards the SAS dye. 

However, under identical conditions, a distinct oxidation peak with high sensitivity was detected at SDSMCNTPE 

(curve a) at 0.794 V with Ipa=53.26 μA and during the reverse scan no characteristic peak response was observed. 

This behavior confirms the irreversible nature of the electrode process. As expected, SDSMCNTPE showed a 

better response compared to that of BCNTPE due to the high surface area render by the modified electrode. 

 

3.4 Effect of scan rate on SDSMCNTPE                                                                                                                    

Cyclic voltammograms recorded for SAS in 0.2 M phosphate buffer solution of pH 6.5 at different scan rates 

depicted in Figure 5a. This observation was considered to scrutinize the kinetics of the electrode process and to 

validate the mass transfer process takes place in the electrochemical process is either adsorption controlled or 
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diffusion controlled. The study of the effect of scan rate on the Ipa reveals that Ipa increased linearly with scan rate 

ranges from 0.05 to 0.20 V/s with correlation coefficient 0.999 (Figure 5b). This study suggested that the mass 

transfer process involved at the electrode surface is adsorption controlled [40, 41]. This activity was further 

validated by consider the slope from the graph of log Ipa vs. log ν (Figure 5c) and it was obtained to be 0.85, which 

is nearly equal to the speculative value 1.0. This confirms the adsorption controlled behaviour of the electrode 

[42].                                                                                                                                                              

 
Figure 4. Cyclic voltammograms of 2×10-4 M SAS at the BCNTPE (curve b) and the SDSMCNTPE (curve a) in 0.2 M 

PBS (pH 6.5). 

 

Figure 5: a) Cyclic voltammograms of 1×10-4 M SAS at the SDSMCNTPE in pH 6.5 PBS at various scan rates, from 0.05-

0.2 V/s. b)The plot of the anodic peak current of SAS as a function of scan rate. c) The plot of log Ipa against log ν. 

3.5 Effect of pH                                                                                                                                                            

Figure 6a shows the effect of solution pH on peak potential as well as oxidation peak current for SAS at 

SDSMCNTPE in 0.2 M PBS over the pH range from 6.0 to 8.0. It was observed that the oxidation peak current 

was increased from pH 6.0‒6.5 and then Ipa was decreased as the pH of the supporting electrolyte increased (Figure 

6b). From the CV obtained, it is evident that the electrode exhibits superior sensitivity with enhanced current 

response at pH 6.5, because of the higher rate of electron transfer at this particular pH. Hence, the PBS of pH 6.5 

was chosen as the supporting electrolyte for the investigation of further parameters.                             
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The relationship between pH and Epa (Figure 6c) shows that as the values of pH increases, the anodic peak 

potentials move towards the negative region. The linearity was observed between the pH of the electrolyte solution 

and the anodic peak potential in the pH range of 6.0‒8.0. The linear regression equation was given by Epa 

(V)=1.50-0.11 pH (R=0.993).                                                                                                                               

 

Figure 6: a) Cyclic voltammograms obtained at the SDSMCNTPE in 0.2 M PBS in pH values, 6‒8 containing  2×10-4 M 

SAS. b) Graph of anodic peak current vs. pH (6.0–8.0) of 2×10-4 M SAS at the SDSMCNTPE. c) Graph of Epa vs. pH for 

SAS. 

3.6 Simultaneous determination of SAS and TZ at SDSMCNTPE                                                                              

The dyes SAS and TZ can co-occur in the textile effluent water coming from the industries which causes health 

effects to aquatic organisms as well as for human beings, its detection and elimination was played an important 

role. So, SAS and TZ were determined simultaneously under optimized condition using CV technique. The studies 

were carried out in the potential window 0.4–1.1 V in 0.2 M PBS (pH 6.5). The cyclic voltammogram (Figure 7) 

displayed well-separated peaks at 0.818 V and 0.946 V corresponding to the oxidation of 3×10-4 M SAS, 1×10-4 

M TZ at SDSMCNTPE (curve a).                                                                                          

 

Figure 7:Simultaneous determination of3×10-4 M SAS and 1×10-4 M TZ at BCNTPE (curve b) and 

SDSMCNTPE (curve a). 
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The SDSMCNTPE was capable of distinguishing the oxidation peaks of SAS and TZ with compelling 

enhancement in the peak current values. Whereas, at BCNTPE no oxidation peak was detected for SAS and TZ 

(curve b). 

3.7 Repeatability, reproducibility and stability of SDSMCNTPE                                                                             

The surface of the electrode has to be renewed after every use by the ejection of carbon nanotube paste from the 

cavity of the electrode and reinstate it with a new paste. So, the study of repeatability, reproducibility, and stability 

of the modified electrode is very important. The repeatability of the current modified electrode was examined 

using five successive measurements taken at the same electrode, and the relative standard deviation (RSD) was 

obtained to be 5%. The stability of the electrode was examined by evaluating the Ipa value after scanning for 40 

cycles in PBS (pH 6.5). The percentage degradation of the SDSMCNTPE was determined by substituting the 

anodic peak current values corresponding to the first scan (Ip1) and the nth scan (Ipn) in the following expression,                                                                                                                                                  

 

and it was obtained to be less than 8%, signifies the excellent stability of the modified electrode. The 

reproducibility of the electrode was also evaluated by extract the data from five successive renewals of the 

modified electrode, and it shows good reproducibility towards the determination of SAS.                                     

3.8 Calibration plot for SAS                                                                                                                                       

Figure 8 depicts the data recorded for the different concentration of SAS at SDSMCNTPE. The peak current 

corresponds to the oxidation of SAS increased linearly with the increase in the concentration of SAS. From the 

data, we observed the presence of two calibration curves which corresponds to two concentration ranges of SAS. 

The calibration equation corresponds to the first linearity is Ipa (A)=2.976×10-5+0.114 with R=0.983 for the 

concentration range from 2×10-6 to 3.5×10-5 M. Likewise, the calibration equation corresponds to the second 

linearity is Ipa (A)=2.966×10-5+0.196 with R=0.992 for the concentration range from 4×10-5 to 8×10-5 M.  The 

second linearity range was considered for the calculation of limit of detection (LOD) and limit of quantification 

(LOQ) and it was evaluated as 5.90×10-7 M and 19.69×10-7 M respectively. This values were calculated using the 

equations,  

LOD=3s/m ; LOQ=10s/m 

here, s represents the standard deviation of the blank assessments and m denotes the slope of the calibration plot. 

 
Figure 8:Calibration plot for the determination of SAS at the SDSMCNTPE in pH 6.5 PBS with the scan rate 0.1 V/s. 

Conclusion 
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In the present study, the adsorption of SDS at carbon nanotube paste electrode was scrutinized by cyclic 

voltammetry technique, which might be able to explain the enhancement effects of surfactant in electroanalytical 

chemistry for SAS. Scan rate studies revealed that the electrochemical process proceeded through adsorption 

controlled step. The modified electrode was suggested for the simultaneous determination of small fragments of 

SAS, and TZ. This fabricated sensor exhibited high sensitivity, stability, reproducibility and repeatability towards 

the determination of SAS. The current developed sensor exhibits antifouling properties and the 

regeneration of the electrode is easy and less time consuming.                                                                                                                           
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